Диагональ осевого сечения цилиндра равна 8 корней из 2 см и образует с плоскастью основания цилиндра угол 45 градусов . найти а) площадь полной поверхности цилиндра б) площадь сесения , проведенного параллельно его оси на растоянии 1 см от нее
Ромб - четырехугольник с равными сторонами. ⇒ сторона ромба равна Р:4=16:4=4 дм Сумма углов параллелограмма, прилежащих к одной стророне ( а ромб- параллелограмм) равна 180° Тогда тупой угол ромба равен 180° минус острый угол. Если из тупого угла В ромба АВСД провести высоту ВН на АД, получим прямоугольный треугольник АВН, в котором катет ВН равен половине гипотенузы АВ. Наверное, Вы уже знаете, что, если катет прямоугольного треугольника равен половине гипотенузы, он лежит против угла 30°, Следовательно, тупой угол ромба равен 180°-30°=150° Вариант решения: Высота ромба - перпендикуляр, проведенный из вершины к его стороне или продолжению стороны.. В треугольнике АВН катет ВН равен половине гипотенузы АВ. Приловжим к треугольнику АВН равный ему треугольник АНВ₁. ВВ₁=2+2=4 дм В треугольнике АВВ₁ все стороны равны 4 дм, следовательно, он равносторонний. В равностороннем треугольнике все углы равны. Сумма углов треугольника равна 180ª⇒ ∠ АВН=180°:3=60º ⇒ ∠ АВС=∠АВН +∠НВС=60°+90°=150°
А(2;-1;0) B(-2;3;2) C(0;0;-4) D(-4;0;2) Координаты середины отрезков найдем по формуле x = (x1 + x2)/2, y = (y1 + y2)/2, z = (z1 + z2)/2. Середина отрезка АВ(0;1;1) Середина отрезка CD(-2;0;-1) Координаты отрезка (вектора), соединяющего эти середины, равны разности соответствующих координат точек его конца и начала: k=(-2;-1;-2) Длина вектора, заданного координатами, равна корню квадратному из cуммы квадратов его координат: |k|=√(4+1+4) = 3, это и есть искомое расстояние. ответ: расстояние между серединами отрезков АВ и CD равно 3.
сторона ромба равна Р:4=16:4=4 дм
Сумма углов параллелограмма, прилежащих к одной стророне ( а ромб- параллелограмм) равна 180°
Тогда тупой угол ромба равен 180° минус острый угол.
Если из тупого угла В ромба АВСД провести высоту ВН на АД, получим прямоугольный треугольник АВН, в котором катет ВН равен половине гипотенузы АВ.
Наверное, Вы уже знаете, что, если катет прямоугольного треугольника равен половине гипотенузы, он лежит против угла 30°,
Следовательно, тупой угол ромба равен 180°-30°=150°
Вариант решения:
Высота ромба - перпендикуляр, проведенный из вершины к его стороне или продолжению стороны..
В треугольнике АВН катет ВН равен половине гипотенузы АВ.
Приловжим к треугольнику АВН равный ему треугольник АНВ₁.
ВВ₁=2+2=4 дм
В треугольнике АВВ₁ все стороны равны 4 дм, следовательно, он равносторонний. В равностороннем треугольнике все углы равны.
Сумма углов треугольника равна 180ª⇒
∠ АВН=180°:3=60º ⇒
∠ АВС=∠АВН +∠НВС=60°+90°=150°
Координаты середины отрезков найдем по формуле
x = (x1 + x2)/2, y = (y1 + y2)/2, z = (z1 + z2)/2.
Середина отрезка АВ(0;1;1)
Середина отрезка CD(-2;0;-1)
Координаты отрезка (вектора), соединяющего эти середины, равны разности соответствующих координат точек его конца и начала:
k=(-2;-1;-2)
Длина вектора, заданного координатами, равна корню квадратному из cуммы квадратов его координат:
|k|=√(4+1+4) = 3, это и есть искомое расстояние.
ответ: расстояние между серединами отрезков АВ и CD равно 3.