Диагональ основания правильной четырехугольная пирамиды равна 8корней из 2, а двугранный угол при стороне основания равен 30°. 1)найдите площадь поверхности пирамиды. 2) найдите расстояние от центра основания до боковой грани
Проведем отрезок ОС Треугольники ACO и BCO - прямоугольные То есть углы CAO и CBO равны по 90° каждый. OC - является биссектрисой для угла ACB следовательно углы ACO и BCO равны 68/2=34 180°=∠OAC+∠ACO+∠COA ∠COA=180°-90°-34=56 Аналогично, для треугольника BCO получим, что ∠COB=56 ∠AOB=∠COA+∠COB=56+56=112 Проведем отрезок AB и рассмотрим треугольник ABO. По теореме о сумме углов треугольника запишем: 180°=∠AOB+∠BAO+∠ABO 180°=112°+∠BAO+∠ABO ABO равнобедренный треугольник, т.к. OA и OB - радиусы окружности и, поэтому, равны. Следовательно ∠ABO=∠BAO (по свойству равнобедренного треугольника). И получается, что ∠ABO=∠BAO=68/2=34
н-да, хорошую Вы нашли задачу для подготовки (просто мне такая не встречалась))) я долго искала объяснение без тригонометрических преобразований (которые проходят уже в 10 классе))) первая идея -- теорема косинусов, но нужен угол между радиусами... первая часть решения -- понять как связаны углы в рассматриваемых треугольниках углы АОВ и DOC --центральные соответствующие им вписанные углы связаны в треугольник ВСК и их сумма равна внешнему углу, не смежному с ними, равна 60 градусов))) значит, можно сделать вывод про сумму этих центральных углов -- она = 120 градусов но эти углы из разных треугольников))) а дальше тема Поворот (одна из заключительных тем геометрии 9 класса))) если два треугольника с известными (данными) сторонами расположить рядом, то получится треугольник с углом 120 градусов и сторонами=радиусами и треугольник с данными сторонами и с углом тоже 120 градусов -- т.к. это получится вписанный угол, опирающийся на дугу 360-120 = 240 градусов))) и теперь по теореме косинусов радиус найти можно без сложных тригонометрических преобразований))) значение косинуса угла в 120 градусов в 9 классе уже известно)))
Треугольники ACO и BCO - прямоугольные
То есть углы CAO и CBO равны по 90° каждый.
OC - является биссектрисой для угла ACB следовательно углы ACO и BCO равны 68/2=34
180°=∠OAC+∠ACO+∠COA
∠COA=180°-90°-34=56
Аналогично, для треугольника BCO получим, что ∠COB=56
∠AOB=∠COA+∠COB=56+56=112
Проведем отрезок AB и рассмотрим треугольник ABO.
По теореме о сумме углов треугольника запишем:
180°=∠AOB+∠BAO+∠ABO
180°=112°+∠BAO+∠ABO
ABO равнобедренный треугольник, т.к. OA и OB - радиусы окружности и, поэтому, равны. Следовательно ∠ABO=∠BAO (по свойству равнобедренного треугольника). И получается, что ∠ABO=∠BAO=68/2=34
я долго искала объяснение без тригонометрических преобразований (которые проходят уже в 10 классе)))
первая идея -- теорема косинусов, но нужен угол между радиусами...
первая часть решения -- понять как связаны углы в рассматриваемых треугольниках
углы АОВ и DOC --центральные
соответствующие им вписанные углы связаны в треугольник ВСК и их сумма равна внешнему углу, не смежному с ними, равна 60 градусов)))
значит, можно сделать вывод про сумму этих центральных углов --
она = 120 градусов
но эти углы из разных треугольников)))
а дальше тема Поворот (одна из заключительных тем геометрии 9 класса)))
если два треугольника с известными (данными) сторонами расположить рядом, то получится треугольник с углом 120 градусов и сторонами=радиусами
и треугольник с данными сторонами и с углом тоже 120 градусов -- т.к. это получится вписанный угол, опирающийся на дугу 360-120 = 240 градусов)))
и теперь по теореме косинусов радиус найти можно без сложных тригонометрических преобразований)))
значение косинуса угла в 120 градусов в 9 классе уже известно)))