Диагонали ac1 и b1d прямоугольного параллелепипеда abcda1b1c1d1 перепедикулярны и равны по 8см .найти объем параллелепипеда,если его высота равна √7 см.
Высота равнобедренного треугольника, проведенного к основанию 6, делит основание пополам. ( cм. рисунок в приложении) Высота разбивает равнобедренный треугольник на два прямоугольных с гипотенузой 5 см и катетом 3 см. Второй катет 4 см ( по теореме Пифагора, это египетский треугольник) S=6·4/2=12 кв. ед Вершина пирамиды проектируется в центр описанной окружности (см. рисунок, три прямоугольных треугольника равны по катету ( высота пирамиды - общая и острому углу) r=S/p=12/(5+5+6)/2=24/16=3/2=1,5 H=r·tg60°=1,5·√3=3√3/2
1) Центром вписанной окружности треугольника является точка пересечения биссектрис.
Биссектриса к основанию равнобедренного треугольника является высотой и медианой.
MO - биссектриса, KE - биссектриса, высота и медиана.
ME=EN=10
По теореме Пифагора
KE =√(MK^2-ME^2) =12*2 =24
По теореме о биссектрисе
KO/OE =MK/ME =13/5 => OE =5/18 KE =20/3
Или по формулам
S=pr
S=√[p(p-a)(p-b)(p-c)], где p=(a+b+c)/2
Отсюда
r=√[(p-a)(p-b)(p-c))/p]
при a=b
r=c/2 *√[(a -c/2)/(a +c/2)] =10*√(16/36] =20/3
3) Вписанный угол, опирающийся на диаметр - прямой, K=90
MN =2*OM =26
По теореме Пифагора
KN =√(MN^2-MK^2) =5*2 =10
P(KMN) =2(5+12+13) =60
Высота разбивает равнобедренный треугольник на два прямоугольных с гипотенузой 5 см и катетом 3 см. Второй катет 4 см ( по теореме Пифагора, это египетский треугольник)
S=6·4/2=12 кв. ед
Вершина пирамиды проектируется в центр описанной окружности
(см. рисунок, три прямоугольных треугольника равны по катету ( высота пирамиды - общая и острому углу)
r=S/p=12/(5+5+6)/2=24/16=3/2=1,5
H=r·tg60°=1,5·√3=3√3/2