1) размеры коробочки должны быть 12 см х 12 см х 3 см; 2) наибольший объём коробочки 432 см³.
Объяснение:
Очевидно, что при одном и том же периметре основания 48 см максимальная площадь будет у квадрата со стороной 48 : 4 = 12 см, т.к., уменьшая одну из сторон квадрата на величину х и добавляя эту же величину х к другой стороне, мы будем получать меньшую площадь:
(12 - х ) (12 + х) = 12² - х² (разность квадратов двух чисел), то есть от площади 144 см² будем отнимать х². Например, при х = 2 см, стороны соответственно будут равны 10 см и 14 см, а площадь 140 см², что 2² меньше площади квадрата.
Таким образом, чтобы команда победила, размеры коробочки должны быть: 12 см х 12 см х 3 см.
Из этого следует, что наибольший объём коробочки равен:
12 · 12 · 3 = 432 см³
ответ: 1) размеры коробочки должны быть 12 см х 12 см х 3 см; 2) наибольший объём коробочки 432 см³.
Если 3 точки лежат на одной прямой, то тангенсы угла наклона соединяющих их прямых равны.
1) Пусть AM = a, AN = b. Тогда по условию NC = 5b, а MD = 4a, BC = 5a. Пусть угол NAM = α. Т.к AC - диагональ, то и угол BCA = углу NAM = α, ведь диагональ пересекает два параллельных основания. Треугольники AMN и BCN подобны по углу и прилегающим к нему сторонам.
2) Пусть угол BNC = β, тогда из подобия ANM тоже = β. Проведем прямую NO, которая параллельна BC и AD. Угол СNO будет равен α, т.к это угол при двух параллельных прямых и секущей. А угол BNO будет равен α + β. Угол DMN является внешним для треугольника ANM, он равен сумме внутренних не смежных с ним углов. DMN = α + β. Т.к. NO ║ AD и тангенсы угла наклона прямых BN, NM и BM равны, то точки B, M, N лежат на одной прямой, чтд
1) размеры коробочки должны быть 12 см х 12 см х 3 см; 2) наибольший объём коробочки 432 см³.
Объяснение:
Очевидно, что при одном и том же периметре основания 48 см максимальная площадь будет у квадрата со стороной 48 : 4 = 12 см, т.к., уменьшая одну из сторон квадрата на величину х и добавляя эту же величину х к другой стороне, мы будем получать меньшую площадь:
(12 - х ) (12 + х) = 12² - х² (разность квадратов двух чисел), то есть от площади 144 см² будем отнимать х². Например, при х = 2 см, стороны соответственно будут равны 10 см и 14 см, а площадь 140 см², что 2² меньше площади квадрата.
Таким образом, чтобы команда победила, размеры коробочки должны быть: 12 см х 12 см х 3 см.
Из этого следует, что наибольший объём коробочки равен:
12 · 12 · 3 = 432 см³
ответ: 1) размеры коробочки должны быть 12 см х 12 см х 3 см; 2) наибольший объём коробочки 432 см³.
Если 3 точки лежат на одной прямой, то тангенсы угла наклона соединяющих их прямых равны.
1) Пусть AM = a, AN = b. Тогда по условию NC = 5b, а MD = 4a, BC = 5a. Пусть угол NAM = α. Т.к AC - диагональ, то и угол BCA = углу NAM = α, ведь диагональ пересекает два параллельных основания. Треугольники AMN и BCN подобны по углу и прилегающим к нему сторонам.
2) Пусть угол BNC = β, тогда из подобия ANM тоже = β. Проведем прямую NO, которая параллельна BC и AD. Угол СNO будет равен α, т.к это угол при двух параллельных прямых и секущей. А угол BNO будет равен α + β. Угол DMN является внешним для треугольника ANM, он равен сумме внутренних не смежных с ним углов. DMN = α + β. Т.к. NO ║ AD и тангенсы угла наклона прямых BN, NM и BM равны, то точки B, M, N лежат на одной прямой, чтд