оловине гипотенузы ВС (СН=1/2CD, СD=BC как стороны ромба). Используем свойство прямоугольного треугольника: если катет прямоугольного треуг-ка равен половине гипотенузы, то угол, лежащий против этого катета, равен 30°. Значит
<CBH=30°
Зная, что сумма острых углов прямоугольного треугольника равна 90°, находим угол С:
<C=90-<CBH=90-30=60°, что и требовалось доказать.
2. ВМ=АВ-AM, CL=BC-BL, DP=CD-CP, AQ=AD-DQ, но
АМ=BL=СР=DQ по условию, а АВ=BC=CD=AD как стороны квадрата. Значит
ВМ=CL=DP=AQ
Прямоугольные треугольники MAQ, LBM, PCL и QDP равны, таким образом, по двум сторонам и углу между ними (углы А, B, C, D - прямые, АМ=BL=СР=DQ по условию, ВМ=CL=DP=AQ как только что доказано). У равных треугольников равны и соответственные стороны MQ, LM, LP и PQ. Значит, MLPQ-квадрат.
По свойству биссектрисы (биссектриса любого угла треугольника делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам треугольника) имеем:
Объяснение:
оловине гипотенузы ВС (СН=1/2CD, СD=BC как стороны ромба). Используем свойство прямоугольного треугольника: если катет прямоугольного треуг-ка равен половине гипотенузы, то угол, лежащий против этого катета, равен 30°. Значит
<CBH=30°
Зная, что сумма острых углов прямоугольного треугольника равна 90°, находим угол С:
<C=90-<CBH=90-30=60°, что и требовалось доказать.
2. ВМ=АВ-AM, CL=BC-BL, DP=CD-CP, AQ=AD-DQ, но
АМ=BL=СР=DQ по условию, а АВ=BC=CD=AD как стороны квадрата. Значит
ВМ=CL=DP=AQ
Прямоугольные треугольники MAQ, LBM, PCL и QDP равны, таким образом, по двум сторонам и углу между ними (углы А, B, C, D - прямые, АМ=BL=СР=DQ по условию, ВМ=CL=DP=AQ как только что доказано). У равных треугольников равны и соответственные стороны MQ, LM, LP и PQ. Значит, MLPQ-квадрат.
ответ: 216
Объяснение:
Введем обозначения: АВ-гипотенуза. АВ: АС=5:4
АМ-биссектриса. ВМ-МС=2
Пусть АВ=5х, тогда АС=4х
СВ=√(25x²-16x²)=3x
пусть СМ=у, тогда МВ=у+2, следовательно у+у+2=3х
2у=3х-2
у=1,5х-1
СМ=1,5х-1; МВ=1,5х+1
По свойству биссектрисы (биссектриса любого угла треугольника делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам треугольника) имеем:
АС/СМ=АВ/ВМ
4х/(1,5х-1)=5х/(1,5х+1)
6x²+4x=7.5x²-5x
1.5x²-9x=0
1.5x(x-6)=0
x1=0 не удовлетворяет условию задачи
x2=6
Отсюда АС=24; СВ=18
S=0.5*18*24=216