У колі з радіусами АО і ОВ пряма а проходить через середини радіусів так, що ОЕ = ОА/4. Оскільки відстань - це перпендикуляр, маємо прямокутний трикутник КОЕ та РОЕ. З прямокутного трикутника КОЕ: ОК = ОА/2, ОЕ = ОА/4. Тобто, катет ОЕ у два рази менший за гіпотенузу ОК. Катет, що дорівнює половині гіпотенузи, лежить проти кута 30 градусів. Тобто, кут ОКЕ = 30 градусів. Кут КОЕ = 90 - 30 = 60 градусів. Трикутники КОЕ та РОЕ рівні за прямим кутом та гіпотенузою, тобто кути КОЕ та РОЕ рівні і дорівнюють по 60 градусів. Кут АОВ = <KOE + <POE = 60 + 60 = 120 градусів.
AO = AB/2 = 12/2 = 6 см
Рассмотрим Δ ACO - прямоугольный: CO = 6√3 см, AO = 6 см, AC - ?
По теореме Пифагора
Теорема: в прямоугольном треугольнике катет, лежащий напротив угла в 30°, равен половине гипотенузы
==> ∠C = 30°
∠A = 90 - 30 = 60° (сумма острых углов в прямоугольном треугольнике равна 90°)
∠ACO = ∠OCB = 30° (диагонали ромба делят углы пополам)
∠ACB = 30 * 2 = 60°
∠ACB = ∠ADB = 60° (в ромбе противоположные углы равны)
∠CAB = ∠DAB = 60° (диагонали ромба делят углы пополам)
∠CAD = 60 * 2 = 120°
∠CAD = ∠CBD = 120° (диагонали ромба делят углы пополам)
ответ: ∠ACB = ∠ADB = 60°, ∠CAD = ∠CBD = 120°