1) Треугольник MNC, образовавшийся после проведения плоскости, параллельной АВ, подобен треугольнику АВС по признаку о равенстве 3-х углов одного треугольника трём углам другого треугольника:
∠А = ∠NMC - как углы соответственные при параллельных АВ и NM и секущей АС;
∠В = ∠СNM - как углы соответственные при параллельных АВ и NM и секущей ВС;
∠С у обоих треугольников общий.
2) Если принять АМ = 3х, то тогда МС = 7х, а сторона АС большого треугольника АВС равна:
АС = 3х + 7х = 10 х.
3) Из подобия треугольников следует, что отношения стороны, лежащих против равных углов равны.
Т.к. точка равноудалена от вершин квадрата, то ее проекцией на плоскость квадрата будет центр описанной около квадрата окружности, т.е. точка пересечения диагоналей квадрата. проекция же наклонной в 13 см, служит половина диагонали квадрата и она может быть найдена по Пифагору.
√(13²-5²)=√(169-25)=12, диагональ равна 2*12=24=а√2, где а - сторона квадрата, тогда а=24/√2=12√2(см), а ее половина =6√2 см; - это и будет искомым расстоянием- длиной отрезка, перпендикулярного сторонам квадрата и проходящего через проекцию данной точки.
1) Треугольник MNC, образовавшийся после проведения плоскости, параллельной АВ, подобен треугольнику АВС по признаку о равенстве 3-х углов одного треугольника трём углам другого треугольника:
∠А = ∠NMC - как углы соответственные при параллельных АВ и NM и секущей АС;
∠В = ∠СNM - как углы соответственные при параллельных АВ и NM и секущей ВС;
∠С у обоих треугольников общий.
2) Если принять АМ = 3х, то тогда МС = 7х, а сторона АС большого треугольника АВС равна:
АС = 3х + 7х = 10 х.
3) Из подобия треугольников следует, что отношения стороны, лежащих против равных углов равны.
Следовательно:
NC : BC = МС : АС,
но т.к. МС : АС = 7х : 10х = 7 : 10,
то и отношение NC : BC = 7 : 10.
Ответ: NC : BC = 7 : 10.
Т.к. точка равноудалена от вершин квадрата, то ее проекцией на плоскость квадрата будет центр описанной около квадрата окружности, т.е. точка пересечения диагоналей квадрата. проекция же наклонной в 13 см, служит половина диагонали квадрата и она может быть найдена по Пифагору.
√(13²-5²)=√(169-25)=12, диагональ равна 2*12=24=а√2, где а - сторона квадрата, тогда а=24/√2=12√2(см), а ее половина =6√2 см; - это и будет искомым расстоянием- длиной отрезка, перпендикулярного сторонам квадрата и проходящего через проекцию данной точки.