Задача решается так, в силу симметрии высота равнобедренного треугольника проходит через центр описанной окружности и заданные 7 сантиметров - часть (или продолжение) высоты от центра окружности до основания. Далее расстояние от центра окружности до любой вершины треугольника - ее радиус - 25 см. Построим треугольник на 7 см части высоты и половине основания (у равнобедренного тр-ка высота и медиана совпадает) - получим прямоугольтый треугольник с гипотенузой 25 см, и катетами 7 см и половина основания, отсюда по т. Пифагора находим половину основания = корень (25*25-7*7)=24 см, полная высота исходного треугольника как нетрудно убедиться либо 7+25=32 см, либо 25-7=18 см, тогда произведение оных 24 на 32 см даст площадь исходного треугольника 768 см^2, и во втором случае 24 на 18 = 432 см^2 з
Далее расстояние от центра окружности до любой вершины треугольника - ее радиус - 25 см.
Построим треугольник на 7 см части высоты и половине основания (у равнобедренного тр-ка высота и медиана совпадает) - получим прямоугольтый треугольник с гипотенузой 25 см, и катетами 7 см и половина основания, отсюда по т. Пифагора находим половину основания = корень (25*25-7*7)=24 см, полная высота исходного треугольника как нетрудно убедиться либо 7+25=32 см, либо 25-7=18 см, тогда произведение оных 24 на 32 см даст площадь исходного треугольника 768 см^2, и во втором случае 24 на 18 = 432 см^2
з
Объяснение:
Параллельные плоскости пересекаются третьей плоскостью по параллельным прямым.
1. Плоскости граней AA₁D₁D и ВВ₁С₁С параллельны. Они пересечены плоскостью (АВ₁С₁), значит линии пересечения параллельны.
(АВ₁С₁) ∩ (ВВ₁С₁) = В₁С₁,
В₁С₁ ║ВС и ВС║AD как противолежащие стороны прямоугольников, ⇒ В₁С₁ ║ AD. Тогда
(АВ₁С₁) ∩ (АА₁D₁) = AD.
AB₁C₁D - сечение параллелепипеда плоскостью (АВ₁С₁).
2. Секущая плоскость и плоскость (АВ₁С₁) параллельны, значит они пересекаются плоскостями граней параллелепипеда по параллельным прямым.
Проведем МТ║AD, MK║DC₁, TP║AB₁ и PK║B₁C₁.
MKPT - искомое сечение.
3. ТМ║ВС, ВТ║СМ, ∠ТВС = 90°, значит ТВСМ прямоугольник,
ТМ = ВС = 4.
Аналогично, РК = ВС = 4.
МКРТ - параллелограмм, так как МТ║РК и МТ = РК.
М - середина CD, МК║DC₁, значит МК - средняя линия ΔDCC₁, тогда К - середина СС₁.
ΔМКС: ∠МСК = 90°, МС = CD/2 = 4, СК = СС₁/2 = 3, значит МК = 5 (египетский треугольник).
Pmkpt = 2(TM + MK) = 2 · (4 + 5) = 2 · 9 =18