Треуго́льник (в евклидовом пространстве) — геометрическая фигура, образованная тремя отрезками, которые соединяют три точки, не лежащие на одной прямой. Указанные три точки называются вершинами треугольника, а отрезки — сторонами треугольника. Часть плоскости, ограниченная сторонами, называется внутренностью треугольника: нередко треугольник рассматривается вместе со своей внутренностью (например, для определения понятия площади)[1]Стороны треугольника образуют в вершинах треугольника три угла, поэтому треугольник можно также определить как многоугольник, у которого имеется ровно три угла[2], т.е. как часть плоскости, ограниченную тремя отрезками, которые соединяют три точки, не лежащие на одной прямой. Треугольник является одной из важнейших геометрических фигур, повсеместно используемых в науке и технике, поэтому исследование его свойств проводилось начиная с глубокой древности.
Понятие треугольника допускает различные обобщения. Можно определить это понятие в неевклидовой геометрии (например, на сфере): на таких поверхностях треугольник определяется как три точки, соединённые геодезическими линиями. В {\displaystyle n}n-мерной геометрии аналогом треугольника является {\displaystyle n}n-й мерный симплекс.
Иногда рассматривают вырожденный треугольник, три вершины которого лежат на одной прямой. Если не оговорено иное, треугольник в данной статье предполагается невырожденным
∠1+∠3=27°+153°=180°- По свойству параллельности прямых:
если сумма внутренних односторонних углов равна 180°, то прямые параллельны- прямые m║n.
2)Дано: MF=FO, NF=FP.
Доказать : MN║PO
Доказательство:
Рассмотрим ΔMFN и ΔPFO: MF=FO, NF=FP, ∠MFN =∠PFO- как вертикальные. Согласно 1-му признаку равенства треугольников ( если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то треугольники равны) ΔMFN =ΔPFO, следовательно в равных треугольниках против соответственно равных сторон лежат равные углы
∠NMF=∠PON.
∠NMF и ∠PON- внутренние накрест лежащие углы при секущей NP.
По свойству параллельности прямых: если внутренние накрест лежащие углы равны, то прямые параллельны. Следовательно прямые MN║PO
Треуго́льник (в евклидовом пространстве) — геометрическая фигура, образованная тремя отрезками, которые соединяют три точки, не лежащие на одной прямой. Указанные три точки называются вершинами треугольника, а отрезки — сторонами треугольника. Часть плоскости, ограниченная сторонами, называется внутренностью треугольника: нередко треугольник рассматривается вместе со своей внутренностью (например, для определения понятия площади)[1]Стороны треугольника образуют в вершинах треугольника три угла, поэтому треугольник можно также определить как многоугольник, у которого имеется ровно три угла[2], т.е. как часть плоскости, ограниченную тремя отрезками, которые соединяют три точки, не лежащие на одной прямой. Треугольник является одной из важнейших геометрических фигур, повсеместно используемых в науке и технике, поэтому исследование его свойств проводилось начиная с глубокой древности.
Понятие треугольника допускает различные обобщения. Можно определить это понятие в неевклидовой геометрии (например, на сфере): на таких поверхностях треугольник определяется как три точки, соединённые геодезическими линиями. В {\displaystyle n}n-мерной геометрии аналогом треугольника является {\displaystyle n}n-й мерный симплекс.
Иногда рассматривают вырожденный треугольник, три вершины которого лежат на одной прямой. Если не оговорено иное, треугольник в данной статье предполагается невырожденным
Доказательство :
Дано : ∠1=27°, ∠2=153°, прямые m, n; k- секущая
Доказать: m║n
Доказательство:
Отмечай вертикальный угол ∠3 =напротив угла 27°:
∠1=∠3=27°- как вертикальные
∠1 и ∠3- внутренние односторонние
∠1+∠3=27°+153°=180°- По свойству параллельности прямых:
если сумма внутренних односторонних углов равна 180°, то прямые параллельны- прямые m║n.
2)Дано: MF=FO, NF=FP.
Доказать : MN║PO
Доказательство:
Рассмотрим ΔMFN и ΔPFO: MF=FO, NF=FP, ∠MFN =∠PFO- как вертикальные. Согласно 1-му признаку равенства треугольников ( если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то треугольники равны) ΔMFN =ΔPFO, следовательно в равных треугольниках против соответственно равных сторон лежат равные углы
∠NMF=∠PON.
∠NMF и ∠PON- внутренние накрест лежащие углы при секущей NP.
По свойству параллельности прямых: если внутренние накрест лежащие углы равны, то прямые параллельны. Следовательно прямые MN║PO