В треугольнике СDE угол СDE = 90 градусов, т.к. DE перп. DC по условию, тогда ЕС - гипотенуза. Проведём из точки D к гипотенузе медиану DM, медиана из вершины прямого угла равна половине гипотенузы, тогда DM = EC/2=1. Треугольник DMC - равнобедренный, тогда углы MDC и MCD равны, но СD - биссектриса, значит углы ВСD и DCM также равны, т.е. углы MDC и BCD равны, значит медиана DM параллельна стороне ВС, т.к. равны накрест лежащие углы при секущей DС, тогда углы ADM и АВС равны как соответственные углы при параллельных прямых, тогда треугольники ADM и АВС подобны по 2 углам, значит AD/DM=AB/BC, но АВ=ВС, т.к. исходный треугольник равнобедренный, т.е. AD/DM=1, значит AD=DM=1.
Для решения задачи необходимо знать свойства углов параллелограмма:
- противоположные углы равны;
- сумма смежных или соседних углов равна 180°;
- сумма углов параллелограмма равна 360°.
В нашем случае углы А и С - противоположные;
Угол В - смежный с углами А и С.
Возможны разные варианты решения:
1 вариант.
Найдем градусную меру одного из углов А и С, потом угол В, как смежный.
180° - 100° / 2 = 180° - 50° = 130°
2 вариант.
Найдем сумму угла В и ему противоположному и разделим на 2.
(360° - 100°) / 2 = 130°.
ответ: угол В равен 130°.
Объяснение:
Треугольник DMC - равнобедренный, тогда углы MDC и MCD равны, но СD - биссектриса, значит углы ВСD и DCM также равны, т.е. углы MDC и BCD равны, значит медиана DM параллельна стороне ВС, т.к. равны накрест лежащие углы при секущей DС, тогда углы ADM и АВС равны как соответственные углы при параллельных прямых, тогда треугольники ADM и АВС подобны по 2 углам, значит AD/DM=AB/BC, но АВ=ВС, т.к. исходный треугольник равнобедренный, т.е. AD/DM=1, значит AD=DM=1.
Интересная задачка напряг извилины.