В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
chizhvlad2003p017q2
chizhvlad2003p017q2
11.09.2022 04:25 •  Геометрия

Доказать равенство треугольников.


Доказать равенство треугольников.

Показать ответ
Ответ:
ndjfhfidi
ndjfhfidi
28.04.2020 04:10

Две окружности касаются внешним образом. Их радиусы относятся как 3:1, а длина их общей внешней касательной равна 6√3. 

Найдите периметр фигуры, образованной внешними касательными и внешними частями окружностей. 

––––––––––––––

Обозначим O и O1 центры окружностей радиусов r и 3r соответствено. 

Пусть AК и ВМ – общие внешняя касательные этих окружностей (точки A и В лежат на меньшей окружности, К и М– на большей). Соединим точки касания   и  радиусы соответственных окружностей. 

Из О проведем перпендикуляр ОН к КО1. 

АКНО – прямоугольник. 

В ⊿ ОНО1 катет ОН=АК=6√3; катет НО1=2r, гипотенуза ОО1=r+3r=4r

Катет О1Н рпвен половине гипотенузы ОО1, следовательно, 

∠ НОО1=30º, ∠ НО1=60º, и длина ОО1=ОН:sin 60º

4r=ОО1=6√3):(√3/2)=12

r=12:4=3

О1К=3r=9

Искомый периметр - сумма: ◡АВ -меньшей окружности, ◡КМ - большей окружности и длин АК и ВМ двух общих касательных.

∠АОО1=О1ОВ=∠АОН+∠НОО1=90°+30°=120°

◡АВ содержит угол АОВ=120º и равна 1/3 длины С меньшей окружности 

С=2πr=6π

◡АВ=2π

∠КО1М=2∠КО1О=120°

меньшая ◡КМ внутри фигуры=1/3 длины окружности,  большая 

◡КМ =2/3 длины  С1 большей окружности 

С1=2π•9=18p

◡КМ=12π

 Периметр равен сумме найденных длин  дуг и длин двух общих внешних касательных.

Р=2π+12π+2•6√3=14π+12√3 


Две окружности касаются внешним образом. их радиусы относятся как 3: 1, а длина их общей внешней кас
0,0(0 оценок)
Ответ:
Renton8546
Renton8546
12.04.2020 04:23
Пусть тр-к ABC имеет медианы AA', BB', CC', построим около него тр-к KLM такой, что KAB подобен CBA, LCB подобен ABC, MAC подобен BCA.
Такое постороение возможно, потому что тогда угол CBL + угол ABK + B = 180 так как CBL = C, ABK = A; A + B + C = 180. Аналогично с остальными сторонами.
Так как АВС подобен трем другим тр-кам, то получилось 3 параллелограмма: ABLC, ABCM, AKBC
Как известно, в параллелограмме сумма квадратов сторон равна сумме квадратов диагоналей. Тогда BC^2 + AL^2 = 2AB^2+2AC^2 => AL^2=2AB^2+2AC^2-BC^2
AL=\sqrt{2AB^2+2AC^2-BC^2}
AA'=\frac{\sqrt{2AB^2+2AC^2-BC^2}}{2}
Аналогично с остальными медианами - медиана равна половине корня из суммы удвоенных квадратов сторон, образующих угол, из которого опускается медиана, без квадрата стороны, на которую она опущена
Выразить длины сторон треугольника через медианы
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота