В равносторонним треугольнике медиана - это и высота, и биссектриса. Также в нем углы равны 60 градусам. Поэтому медиана a.k.a. биссектриса делит угол BAC на два угла по 30 градусов. То есть угол MAC равен 30 градусам.
Чтобы найти расстояние от точки М до АС необходимо опустить перпендикуляр из М к отрезку АС. Образуется прямоугольный треугольник АМK (K - точка на АС). В нем катет МК равен половине гипотенузы, т.к. лежит против угла в 30 градусов. То есть МК = 29/2= 14,5.
В прямоугольнике диагонали равны и точкой пересечения делятся пополам =>
Треугольник РОК равносторонний, так как
ОК=ОР и ∠ РОК = 60°). => ОР = ОК = РК = 2 ед.
ОН=ОР = 2 ед. РН = 4 ед.
Скалярное произведение векторов можно записать так:
a·b=|a|·|b|c·сosα.
Определение: "Углом между двумя векторами, отложенными от одной точки, называется кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором".
Совместим начала векторов ОР и РК в точке О. Тогда угол между векторами ОР и ОК' (вектора ОК и ОК' равны) равен 120°.
Векторное произведение указанных в условии векторов:
ответ: 1)30; 2)14,5
Объяснение:
В равносторонним треугольнике медиана - это и высота, и биссектриса. Также в нем углы равны 60 градусам. Поэтому медиана a.k.a. биссектриса делит угол BAC на два угла по 30 градусов. То есть угол MAC равен 30 градусам.
Чтобы найти расстояние от точки М до АС необходимо опустить перпендикуляр из М к отрезку АС. Образуется прямоугольный треугольник АМK (K - точка на АС). В нем катет МК равен половине гипотенузы, т.к. лежит против угла в 30 градусов. То есть МК = 29/2= 14,5.
(МН·РН) = 4 ед.
(ОР·РК) = -2 ед.
Объяснение:
В прямоугольнике противоположные стороны равны =>
вектора МН = РК.
∠ РОК = 180° - 120° = 60° ( смежные углы).
В прямоугольнике диагонали равны и точкой пересечения делятся пополам =>
Треугольник РОК равносторонний, так как
ОК=ОР и ∠ РОК = 60°). => ОР = ОК = РК = 2 ед.
ОН=ОР = 2 ед. РН = 4 ед.
Скалярное произведение векторов можно записать так:
a·b=|a|·|b|c·сosα.
Определение: "Углом между двумя векторами, отложенными от одной точки, называется кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором".
Совместим начала векторов ОР и РК в точке О. Тогда угол между векторами ОР и ОК' (вектора ОК и ОК' равны) равен 120°.
Векторное произведение указанных в условии векторов:
(МН·РН) = (РК·РН) = 2·4·Cos60° = 4 ед.
(ОР·РК) = 2·2·Cos120° = -2 ед.