докажите что биссектриса внешнего угла параллелограмма вместе с его сторонами (или их продолжениями), не проходящими через вершину этого угла, образует равнобедренный треугольник, сумма боковых сторон которого равна периметру параллелограмма. (желательно еще рисунок)
Объяснение:
1)
Дано:
Параллелограм
S=48см
h(a)=2см
h(b)=6см
а=?
b=?
_________
Площадь параллелограма равна произведению высоты на сторону, на которую опущена эта высота
S=а*h(а)
Отсюда
а=S/h(a)=48/2=24 см сторона параллелограма
b=S/h(b)=48/6=8 см сторона параллелограма.
ответ: 24см; 8см.
2)
Дано:
АВС- прямоугольный треугольник
АС=3√3см
<АВС=60°
АВ=?
СВ=?
_________
sin<B=AC/AB
√3/2=3√3/AB
AB=3√3*2/√3=6см.
tg60°=AC/CB
√3=3√3/CB
CB=3√3/√3=3см.
S=1/2*AC*CB=1/2*3√3*3=4,5√3 см²
ответ: СВ=3см; АВ=6см; S=4,5√3см²
3)
Дано:
ABCD- трапеция.
ВС=6см
АD=14см
АВ=СD=5см
S=?
_______
Решение
АК=МD
AK=(AD-BC)/2=(14-6)/2=8/2=4 см.
∆АКВ- прямоугольный треугольник.
По теореме Пифагора
ВК=√(АВ²-АК²)=√(5²-4²)=√(25-16)=√9=3 см
S=BK(BC+AD)/2=3(6+14)/2=3*20/2=30см²
ответ: 30см²
Решено zmeura1204.
ХироХамаки Новичок
(решение в файле)
2. Условие задачи 2. неточное. Должно быть:
Основание АС равнобедренного треугольника лежит в плоскости α. Найдите расстояние от точки В до плоскости α, если АВ = 5, АС = 6, а двугранный угол между плоскостью треугольника и плоскостью α равен 60 градусам.
Проведем ВН⊥АС и ВО⊥α.
ВО - искомое расстояние.
ОН - проекция ВН на плоскость α, значит ОН⊥АС по теореме, обратной теореме о трех перпендикулярах.
∠ВНО = 60° - линейный угол двугранного угла между плоскостью α и плоскостью треугольника.
АН = НС = 6/2 = 3 (ВН - высота и медиана равнобедренного треугольника)
ΔАВН: по теореме Пифагора
ВН = √(АВ² - АН²) = √(25 - 9) = √16 = 4
ΔВНО: ВО = ВН · sin 60° = 4 · √3/2 = 2√3
3. АО⊥α, ОВ и ОС - проекции наклонных АВ и АС на плоскость α, тогда
∠АВО = ∠АСО = 60°.
ΔАВО = ΔАСО по катету и противолежащему острому углу (АО - общий катет и ∠АВО = ∠АСО = 60°), значит
АВ = АС = 6.