Дано: АBCD - равнобокая трапеция, (О;r), r=11см, AB=22 см. Найти: S Решение: AB =CD=22см(равнобокая трапеция), Если трапецию описали около окружности, значит, сумма противолежащих сторон равна. Следовательно AB +CD = BC +AD, 22см+22 см= 44см BC = 11см, значит, АD =44см - BC =44см-11см = 33 см, S= 11 см·22см·22см· 33см =175 692 см² ответ: 175692 см² (но это не точно)
Б) Дано: АВСД- четырехугольник, угол А=99°, угол В=87° Найти: угол С, угол Д. Решение: т.к. АВСД вписан в окружность, то сумма его противолежащих углов равно 180°, значит, угол С=180°- угол А=180°-99°=81°, угол Д= 180°- угол В=180°-87°=93°. ответ: 81°, 93°
M и N – середины боковых сторон трапеции ABCD, тогда отрезок MN – средняя линия трапеции.
Свойства средней линии трапеции:
1) средняя линия трапеции параллельна основаниям;
2) средняя линия трапеции равна половине суммы оснований.
Тогда, по 1 свойству, прямая, проходящая через среднюю линию MN, будет параллельна прямой, проходящей через основание АD.
Признак параллельности прямой и плоскости:
Если прямая, не лежащая в данной плоскости, параллельна какой-нибудь прямой, лежащей в этой плоскости, то она параллельна самой плоскости.
Получается:
MN параллельна АD, АD лежит в плоскости α, следовательно, по признаку параллельности прямой и плоскости, MN || α.
По второму свойству средней линии трапеции:
MN = (ВС + АD)/2
АD = 2·MN – ВС
АD = 2∙6 – 4
АD = 8
(О;r), r=11см,
AB=22 см.
Найти: S
Решение:
AB =CD=22см(равнобокая трапеция),
Если трапецию описали около окружности, значит, сумма противолежащих сторон равна.
Следовательно AB +CD = BC +AD,
22см+22 см= 44см
BC = 11см, значит, АD =44см - BC =44см-11см = 33 см,
S= 11 см·22см·22см· 33см =175 692 см²
ответ: 175692 см² (но это не точно)
Б) Дано: АВСД- четырехугольник,
угол А=99°, угол В=87°
Найти: угол С, угол Д.
Решение: т.к. АВСД вписан в окружность, то сумма его противолежащих углов равно 180°, значит, угол С=180°- угол А=180°-99°=81°, угол Д= 180°- угол В=180°-87°=93°.
ответ: 81°, 93°