Предположим, что внутри выпуклого четырёхугольника ABCD существует область, которую не покрывают круги, построенные на его сторонах как диаметрах. Пусть точка Е принадлежит этой области. Чтоб не загромождать рисунок, построим только одну окружность с диметром AD. Из точки Е опустим на AD перпендикуляр EF. Он пересечёт окружность в точке G. Любой вписанный в окружность угол, построенный на её диаметре, прямой. Т.е. <AGD = 90°. Следовательно, <AЕD обязательно будет острым (<AЕD < 90°). Повторяя аналогичные построения для трёх других сторон, получим 4 острых угла, сумма которых меньше 360°, что невозможно, так как их сумма должна быть равна 360°. Пришли к противоречию. Значит, внутри выпуклого четырёхугольника не существует области, которую не покрывают круги, построенные на его сторонах как диаметрах.
Пусть точка Е принадлежит этой области.
Чтоб не загромождать рисунок, построим только одну окружность с диметром AD.
Из точки Е опустим на AD перпендикуляр EF. Он пересечёт окружность в точке G.
Любой вписанный в окружность угол, построенный на её диаметре, прямой. Т.е. <AGD = 90°.
Следовательно, <AЕD обязательно будет острым (<AЕD < 90°).
Повторяя аналогичные построения для трёх других сторон, получим 4 острых угла, сумма которых меньше 360°, что невозможно, так как их сумма должна быть равна 360°.
Пришли к противоречию.
Значит, внутри выпуклого четырёхугольника не существует области, которую не покрывают круги, построенные на его сторонах как диаметрах.