Решение: (поставьте точку О на стороне АС при пересечении её прямой ВМ)
Дано : ΔАВС, АВ=ВС, АО=ОС
НАйти: АМ=МС
Решение: По условиям задачи ΔАВС - равнобедренный,а ВО- есть медиана , проведенная из вершины равнобедренного треугольника к его основанию. Согласно свойству равнобедренного треугольника : медиана, биссектриса и высота, проведённые из вершины, противолежащей основанию, совпадают.
Значит ∠АВМ=∠СВМ( т.к. ВО- биссектриса). Рассмотрим ΔАВМ и ΔСВМ.
где АВ=ВС, ВМ- общая и ∠АВМ=∠СВМ. Согласно первому признаку равенства треугольников( Если две стороны одного треугольника и угол между ними соответственно равны двум сторонам другого треугольника и углу между ними, то такие треугольники равны) ΔАВМ = ΔСВМ . Значит АМ = СМ.
И так как АМ=С М, то ΔАМС есть равнобедренный по определению равнобедренных Δ-ков(Треугольник, у которого две стороны равны, называют равнобедренным треугольником), что и требовалось доказать.
Решение: (поставьте точку О на стороне АС при пересечении её прямой ВМ)
Дано : ΔАВС, АВ=ВС, АО=ОС
НАйти: АМ=МС
Решение: По условиям задачи ΔАВС - равнобедренный,а ВО- есть медиана , проведенная из вершины равнобедренного треугольника к его основанию. Согласно свойству равнобедренного треугольника : медиана, биссектриса и высота, проведённые из вершины, противолежащей основанию, совпадают.
Значит ∠АВМ=∠СВМ( т.к. ВО- биссектриса). Рассмотрим ΔАВМ и ΔСВМ.
где АВ=ВС, ВМ- общая и ∠АВМ=∠СВМ. Согласно первому признаку равенства треугольников( Если две стороны одного треугольника и угол между ними соответственно равны двум сторонам другого треугольника и углу между ними, то такие треугольники равны) ΔАВМ = ΔСВМ . Значит АМ = СМ.
И так как АМ=С М, то ΔАМС есть равнобедренный по определению равнобедренных Δ-ков(Треугольник, у которого две стороны равны, называют равнобедренным треугольником), что и требовалось доказать.