Площадь равнобедренного треугольника S=(1/2) b h где b основание, h высота. найдем высоту h=S/(1/2)b, h=108/9 h=12высота половина основания и любая боковая сторона равнобедренного треугольника составляют прямоугольный треугольник. Применим теорему Пифагора. с^2=a^2+b^2 c у нас боковая сторона равнобедренного, а это высота , b это половина основания равнобедренного треугольника. Отсюда с= корень квадратный из суммы 12^2+9^2, то есть корень из 225. который равен 15. это и есть боковая сторона равнобедренного треугольника
Значит, дуги ОT и ОL равны, значит и дуги ВТ и BL тоже равны. Т.е. площади закрашенных сегментов равны.
∠ВТО = 90° как вписанный, опирающийся на диаметр. Значит, ОТ - высота прямоугольного треугольника АВО.
ОТ² = ВТ · ТА = 9√3 · 3√3 = 81
ОТ = 9 см
ΔВТО: ∠Т = 90°. tg∠B = TO/BT = 9/(9√3) = 1/√3 ⇒ ∠TBO = 30°
⇒ BO = 2TO = 18 см, а радиус окружности BK = KO = KT = 9 см
ΔВКТ равнобедренный, ⇒∠КТВ = ∠КВТ = 30° ⇒ ∠BKT = 120°
Sсегм = Sсект - SΔbkt = π · KB² · 120° / 360° - 1/2·BK·KT·sin120° =
= π · 81 / 3 - 1/2· 81· √3/2 = 27π - 81√3/4
Площадь круга вне ромба в 2 раза больше:
Sкр = 54π - 81√3/2