1) Сторону правильного n-угольника можно вычислить по формуле a=2R*sin 180/n, где n - количество сторон. Однако, R мы не знаем. Его можно вычислить по другой формуле - R=r/cos 180/n. Подставим сюда известные числовые значения: R=3/cos 18=3/0.95=3.15 (см). Найдем сторону фигуры: a=2*3.15*sin 180/n=2*3.15*0.3=1.89 (см) ответ: 1.89 см. 2) Найдем R: R = r/cos 180/n=5/√3/2=10√3/3 (см) Длина стороны равна R, следовательно a=R=10√3/3, значит, P = 6a=10√3/3*6=20√3 (cм) или 34.64 см. ответ: 20√3 см или 34.64 см. 3) Радиус описанной около 6-угольника окружности = длине стороны, следовательно R = 5√3 см. Для треугольника эта же окружность является вписанной, т.е. для треугольника r=5√3. В свою очередь, R=2r=2*5√3=10√3 (см). Сторону правильного треугольника можно вычислить по формуле a=R√3=10√3*√3=10*3=30 (см). ответ: 30 см.
Рисунок к задаче простой, каждый сумеет нарисовать прямоугольный треугольник. Нарисуем треугольник АВС, проведем высоту СН. Обратим внимание на то, что в треугольнике АВС, так как СН перпендикулярно АВ, косинус А можно выразить не только, как АС:АВ, но и АН:АС Тогда из соs A=√51):10 получим отношение АН:АС=√51):10 Произведение крайних членов пропорции равно произведению ее средних членов: 10 АН=12√51 АН=12√51):10 По т.Пифагора из треугольника АСН СН²=АС²-АН² СН²=144 -144·51:100 Приведем к общему знаменателю: СН²=(144·100 -144·51):100 СН²=144(100-51):100 СН²=144·49:100 СН=12·7:10=84:10=8,4
R=3/cos 18=3/0.95=3.15 (см).
Найдем сторону фигуры:
a=2*3.15*sin 180/n=2*3.15*0.3=1.89 (см)
ответ: 1.89 см.
2) Найдем R:
R = r/cos 180/n=5/√3/2=10√3/3 (см)
Длина стороны равна R, следовательно a=R=10√3/3, значит,
P = 6a=10√3/3*6=20√3 (cм) или 34.64 см.
ответ: 20√3 см или 34.64 см.
3) Радиус описанной около 6-угольника окружности = длине стороны, следовательно R = 5√3 см. Для треугольника эта же окружность является вписанной, т.е. для треугольника r=5√3. В свою очередь, R=2r=2*5√3=10√3 (см). Сторону правильного треугольника можно вычислить по формуле a=R√3=10√3*√3=10*3=30 (см).
ответ: 30 см.
Нарисуем треугольник АВС, проведем высоту СН.
Обратим внимание на то, что в треугольнике АВС, так как СН перпендикулярно АВ,
косинус А можно выразить не только, как АС:АВ, но и АН:АС
Тогда из соs A=√51):10 получим отношение
АН:АС=√51):10
Произведение крайних членов пропорции равно произведению ее средних членов:
10 АН=12√51
АН=12√51):10
По т.Пифагора из треугольника АСН
СН²=АС²-АН²
СН²=144 -144·51:100
Приведем к общему знаменателю:
СН²=(144·100 -144·51):100
СН²=144(100-51):100
СН²=144·49:100
СН=12·7:10=84:10=8,4