Точка С лежит на отрезке АВ. Через точку А проведена плоскость, а через точки В и С – параллельные прямые, пересекающие эту плоскость соответственно в точках В1 и С1.
Найдите длину отрезка ВВ1, если АС:СВ=4:3, СС1 = 8 см.
––––––––––
Через две параллельные прямые можно провести плоскость, притом только одну. ⇒
ВВ1 и СС1 лежат в одной плоскости.
Точки А, В, С. принадлежат отрезку АВ. ⇒ АВ ∈ той же плоскости.
Плоскость, проведенная через А, и плоскость, содержащая СС1 и ВВ1, пересекаются по прямой. АВ1.
Соответственные углы при параллельных прямых и секущей равны. ⇒
∠АСС1= ∠АВВ1, ∠АС1С=∠АВ1В ⇒
∆ АСС1~∆ АВВ1 по первому признаку подобия треугольников.
Пусть коэффициент отношения отрезков АС:ВС будет а.
Точка С лежит на отрезке АВ. Через точку А проведена плоскость, а через точки В и С – параллельные прямые, пересекающие эту плоскость соответственно в точках В1 и С1.
Найдите длину отрезка ВВ1, если АС:СВ=4:3, СС1 = 8 см.
––––––––––
Через две параллельные прямые можно провести плоскость, притом только одну. ⇒
ВВ1 и СС1 лежат в одной плоскости.
Точки А, В, С. принадлежат отрезку АВ. ⇒ АВ ∈ той же плоскости.
Плоскость, проведенная через А, и плоскость, содержащая СС1 и ВВ1, пересекаются по прямой. АВ1.
Соответственные углы при параллельных прямых и секущей равны. ⇒
∠АСС1= ∠АВВ1, ∠АС1С=∠АВ1В ⇒
∆ АСС1~∆ АВВ1 по первому признаку подобия треугольников.
Пусть коэффициент отношения отрезков АС:ВС будет а.
Тогда АВ=7а
Из подобия следует отношение:
АВ:АС=ВВ1:СС1
7:4=ВВ1:8
4 ВВ1=56⇒
ВВ1=14
2часть прямой, состоящая из данной точки и всех точек, лежащих по одну сторону от неё
3 точка отсчета, начало луча
4 бесконечные промежутки (полупрямые) числовой прямой
5 называется начальной точкой
6 Геометрическая фигура состоящая из двух точек А и В и всех точек прямой АВ, лежащих между ними, называется отрезком АВ
7 двумя точками , которые его ограничивают
8 отрезок можно разделить на конечное кол-во отрезков , их длину можно складывать
9 AВ , CD
AB=CD
10 находится на равном расстоянии от обоих концов данного отрезка