Обозначим скрещивающиеся прямые АВ и СD. Отметим на прямой АВ точку О.
1. Через прямую и не лежащую на ней точку можно провести плоскость, и притом только одну. Проведем эту плоскость через точку О и прямую СD.
2. Соединим центр СD с точкой О. От концов СD проведем отрезки, параллельные и равные первой прямой. Обозначим их концы С₁ и D₁ соединим.
Мы получили две пересекающиеся прямые АВ и С₁D₁, через которые можно провести плоскость, и притом только одну. Проведенная таким образом плоскость параллельна прямой СD.
AC - диаметр, то угол ABC - прямой т. е треугольник наш прямоугольный.
OB - серединный перпендикуляр => AB||OB по теорме Фалеса, AO так относится к OC, как KB (k - cередина CB) к CK, т. е AO=OC (если не учили т.Фалеса, можно сказать, что ABC Подобен OCK по 2 углам, вывод точно такой же) . т. к. AO=OC, то O - центр окружности, OC -радиус. получаем, что <ВОС - центральный угол, он опирается на ту же дугу, что и вписанный угол CAB=1/2<ВОС =60 градусов. т. к ABC прямоугольный, то ACB=30. катет, противолежащий углу 30 градусов равен половине гипотенузы , т. е. AC=2*AB=12. радиус=1/2AC=6.
Обозначим скрещивающиеся прямые АВ и СD. Отметим на прямой АВ точку О.
1. Через прямую и не лежащую на ней точку можно провести плоскость, и притом только одну. Проведем эту плоскость через точку О и прямую СD.
2. Соединим центр СD с точкой О. От концов СD проведем отрезки, параллельные и равные первой прямой. Обозначим их концы С₁ и D₁ соединим.
Мы получили две пересекающиеся прямые АВ и С₁D₁, через которые можно провести плоскость, и притом только одну. Проведенная таким образом плоскость параллельна прямой СD.
AC - диаметр, то угол ABC - прямой т. е треугольник наш прямоугольный.
OB - серединный перпендикуляр => AB||OB по теорме Фалеса, AO так относится к OC, как KB (k - cередина CB) к CK, т. е AO=OC (если не учили т.Фалеса, можно сказать, что ABC Подобен OCK по 2 углам, вывод точно такой же) . т. к. AO=OC, то O - центр окружности, OC -радиус. получаем, что <ВОС - центральный угол, он опирается на ту же дугу, что и вписанный угол CAB=1/2<ВОС =60 градусов. т. к ABC прямоугольный, то ACB=30. катет, противолежащий углу 30 градусов равен половине гипотенузы , т. е. AC=2*AB=12. радиус=1/2AC=6.
ответ:6