1. конус — тело, полученное объединением всех лучей, исходящих из вершины конуса, и проходящих через плоскую поверхность.
формула площади полной поверхности конуса:
s = πr^2 + πrl = π r(r+l)
где s - площадь, r - радиус основания конуса, l - образующая конуса.
2. обозначим: о - центр шара, а - конец радиуса, в - конец другого радиуса, проведенного перпендикулярно к оа. ав- диаметр сечения. из равнобедренного прямоугольного треугольника найдем ав (любым известным способом, например, по теореме пифагора) ав = 8корней из 2, т. е. диаметр сечения 8 корней из 2, следовательно, радиус сечения 4 корня из 2. площадь сечения 32 пи.
3. площадь осевого сечения цилиндра равна площади диагонального сечения куба, которое в свою очередь, равно произведению ребра куба на величину диагонали грани куба.
Точка D проецируется в центр описанной окружности, так как она равноудалена от вершин треугольника. В правильном треугольнике центры описанной и вписанной окружности совпадают и лежат на пересечении медиан треугольника, то есть делят медиану (высоту, биссектрису) в отношении 2:1, считая от вершины. Причем (1/3) медианы - это радиус вписанной окружности, а (2/3)медианы - радиус описанной окружности. В нашем случае (1/3) = 3 см. Тогда (2/3) = 6см. Из прямоугольного треугольника, образованного расстояниями от точки D до плоскости треугольника и радиусом описанной окружности (катеты) и расстоянием от точки D до вершин треугольника (гипотенуза) найдем искомое расстояние:
формула площади полной поверхности конуса:
s = πr^2 + πrl = π r(r+l)
где s - площадь, r - радиус основания конуса, l - образующая конуса.
2. обозначим: о - центр шара, а - конец радиуса, в - конец другого радиуса, проведенного перпендикулярно к оа. ав- диаметр сечения. из равнобедренного прямоугольного треугольника найдем ав (любым известным способом, например, по теореме пифагора) ав = 8корней из 2, т. е. диаметр сечения 8 корней из 2, следовательно, радиус сечения 4 корня из 2. площадь сечения 32 пи.
3. площадь осевого сечения цилиндра равна площади диагонального сечения куба, которое в свою очередь, равно произведению ребра куба на величину диагонали грани куба.Точка D проецируется в центр описанной окружности, так как она равноудалена от вершин треугольника. В правильном треугольнике центры описанной и вписанной окружности совпадают и лежат на пересечении медиан треугольника, то есть делят медиану (высоту, биссектрису) в отношении 2:1, считая от вершины. Причем (1/3) медианы - это радиус вписанной окружности, а (2/3)медианы - радиус описанной окружности. В нашем случае (1/3) = 3 см. Тогда (2/3) = 6см. Из прямоугольного треугольника, образованного расстояниями от точки D до плоскости треугольника и радиусом описанной окружности (катеты) и расстоянием от точки D до вершин треугольника (гипотенуза) найдем искомое расстояние:
d = √(4²+6²)=√52 = 2√13см. Это ответ.