П равильная четырехугольная призма - это многогранник, основания которого являются правильными четырехугольниками - квадратами, а боковые грани — равными прямоугольниками.
Так как сторона квадрата ( верхнего основания призмы) противолежит углу 30 градусов, она равна половине диагонали призмы и равна 5 см. Нужно теперь найти высоту призмы. Для этого придется найти диагональ боковой грани из треугольника, гипотенузой в котором является диагональ призмы, а катетами сторона квадрата и диагональ боковой грани. Она равна √(100 -25)= √75 =5√3 Теперь находим высоту призмы h² =(5√3)² -5² =√50=5√2 Площадь полной поверхности призмы равна площади ее четырех боковых граней плюс площадь оснований. Площадь боковых граней равна 4*5*5√2=100√2 Площадь оснований 2*5*5=50 см²
Площадь полной поверхности призмы 100√2 +50=50(2√2+1) см
Пусть OH - высота треугольника MOP - она и медиана (т.к. треугольник MOP - равнобедренный) = > OH = PM/2 = h (т.к. медиана выходящая из прямого угла равна половине гипотенузы)
Площадь MOP = h*2h/2 = h^2 = 20 корней из 3 => OM =
= Корень из (20 корней из 3 + 20 корней из 3) = Корень из (40 корней из 3) ( по теореме ПИФАГОРА)
Пусть OX - высота треугольника ONK - она и медиана (т.к. треугольник ONK - равнобедренный) = > OX = NK/2 = h (т.к. медиана выходящая из прямого угла равна половине гипотенузы)
Площадь MOP = h*2h/2 = h^2 = 8 корней из 3 => NO =
Корень из( 8 корней из 3 + 8 корней из 3) = Корень из (16 корней из 3) = 4 корня из 3 ( по теореме ПИФАГОРА)
Площадь треугольника NOM = OM * NO / 2 = 4 корня из 3 * Корень из (40 корней из 3) / 2 = 4 корня из 3 * Корень из (10 корней из 3) = 4 Корня из(30 уорней из 3)
П равильная четырехугольная призма - это многогранник, основания которого являются правильными четырехугольниками - квадратами, а боковые грани — равными прямоугольниками.
Так как сторона квадрата ( верхнего основания призмы) противолежит углу 30 градусов, она равна половине диагонали призмы и равна 5 см.
Нужно теперь найти высоту призмы.
Для этого придется найти диагональ боковой грани из треугольника, гипотенузой в котором является диагональ призмы, а катетами сторона квадрата и диагональ боковой грани.
Она равна
√(100 -25)= √75 =5√3
Теперь находим высоту призмы
h² =(5√3)² -5² =√50=5√2
Площадь полной поверхности призмы равна площади ее четырех боковых граней плюс площадь оснований.
Площадь боковых граней равна
4*5*5√2=100√2
Площадь оснований
2*5*5=50 см²
Площадь полной поверхности призмы
100√2 +50=50(2√2+1) см
Пусть OH - высота треугольника MOP - она и медиана (т.к. треугольник MOP - равнобедренный) = > OH = PM/2 = h (т.к. медиана выходящая из прямого угла равна половине гипотенузы)
Площадь MOP = h*2h/2 = h^2 = 20 корней из 3 => OM =
= Корень из (20 корней из 3 + 20 корней из 3) = Корень из (40 корней из 3) ( по теореме ПИФАГОРА)
Пусть OX - высота треугольника ONK - она и медиана (т.к. треугольник ONK - равнобедренный) = > OX = NK/2 = h (т.к. медиана выходящая из прямого угла равна половине гипотенузы)
Площадь MOP = h*2h/2 = h^2 = 8 корней из 3 => NO =
Корень из( 8 корней из 3 + 8 корней из 3) = Корень из (16 корней из 3) = 4 корня из 3 ( по теореме ПИФАГОРА)
Площадь треугольника NOM = OM * NO / 2 = 4 корня из 3 * Корень из (40 корней из 3) / 2 = 4 корня из 3 * Корень из (10 корней из 3) = 4 Корня из(30 уорней из 3)
ОТВЕТ: 4 Корня из(30 уорней из 3)