Так как по условию xm+yn=5n, тоxm =(5-y)n если x не равно 0, то разделив левую и правую части уравнения на x, получим m =((5-y)/x) n, где ((5-y)/x) какое-то число.
По условию коллинеарности:Два вектора a и b коллинеарны, если существует число не равное нулю n такое, что a = n · b Следовательно, если a и b не коллинеарны то такого числа не существует. А в нашем примере такое число есть (при x не равном 0). Следовательно если x не равно 0, то векторы коллинеарны. А так как по условию они не коллинеарны, то x = 0. Тогда и y = 0. ответ: x = 0 и y = 0
если x не равно 0, то разделив левую и правую части уравнения на x, получим
m =((5-y)/x) n, где ((5-y)/x) какое-то число.
По условию коллинеарности:Два вектора a и b коллинеарны, если существует число не равное нулю n такое, что a = n · b
Следовательно, если a и b не коллинеарны то такого числа не существует.
А в нашем примере такое число есть (при x не равном 0).
Следовательно если x не равно 0, то векторы коллинеарны.
А так как по условию они не коллинеарны, то x = 0. Тогда и y = 0.
ответ: x = 0 и y = 0
Объяснение:
7)
<АВС=180°-<А*2=180°-30°=150°
Н=АВ/2=2/2=1 ед высота треугольника опущенная на ВС.
S=1/2*BC*H=1/2*2*1=1ед²
ответ: 1ед²
13)
S=MN²√3/4=4²√3/4=4√3 ед²
ответ: 4√3 ед².
14)
ВС=Р/3=6/3=2 ед сторона треугольника.
S=BC²√3/4=2²√3/4=√3 ед²
ответ: √3 ед²
15)
АВС- равносторонний треугольник.
S=AC²√3/4=8²√3/4=64√3/4=16√3 ед²
ответ: 16√3 ед²
19)
<В=180°-2*75°=30°
S=1/2*BC²*sin<B=1/2*2²*1/2=1ед²
ответ: 1ед²
20)
∆АВС- равносторонний.
S=a²√3/4 ед²
ответ: а²√3/4 ед²
21)
По формуле Герона.
р=(2*LM+KM)/2=50/2=25
S=√(25(25-13)(25-13)(25-24)=√(25*12*12*1)=
=5*12=60ед²
ответ: 60ед²