Пусть ABCD - равнобедренная трапеция, AB = CD. Средняя линия трапеции = 12, т.е. BC + AD = 2*12 = 24. Угол А = 30 градусам.
Для любого четырехугольника, описанного около окружности справедливо: BC + AD = AB + CD 24 = 2* AB AB = 12.
Опустим высоту BH. Для прямоугольного треугольника известно, что катет, лежащий напротив угла в 30 градусов, равен половине гипотенузы, т.е. BH = AB : 2 = 12 : 2 = 6.
Радиус окружности, вписанной в равнобедренную трапецию, равен половине высоты, значит, r = BH : 2 = 6 : 2 = 3.
Диагонали ромба перпендикулярны и точкой пересечения делятся пополам. Возьмем один из четырех прямоугольных треугольников, на которые ромб делится диагоналями. Перпендикуляр, проведенный из вершины прямого угла к стороне ромба, делит его на подобные треугольники.Первый катет (половина одной диагонали) есть среднее геометрическое между числами 29 и 25, т е равен 5√29. Второй катет (половина другой диагонали) есть среднее геометрическое между числами 29 и 4, т е равен 2√29. Диагонали ромба равны 10√29 и 4√29
Для любого четырехугольника, описанного около окружности справедливо:
BC + AD = AB + CD
24 = 2* AB
AB = 12.
Опустим высоту BH. Для прямоугольного треугольника известно, что катет, лежащий напротив угла в 30 градусов, равен половине гипотенузы, т.е.
BH = AB : 2 = 12 : 2 = 6.
Радиус окружности, вписанной в равнобедренную трапецию, равен половине высоты, значит, r = BH : 2 = 6 : 2 = 3.
ответ: 3.
Возьмем один из четырех прямоугольных треугольников, на которые ромб делится диагоналями. Перпендикуляр, проведенный из вершины прямого угла к стороне ромба, делит его на подобные треугольники.Первый катет (половина одной диагонали) есть среднее геометрическое между числами 29 и 25, т е равен 5√29. Второй катет (половина другой диагонали) есть среднее геометрическое между числами 29 и 4, т е равен 2√29. Диагонали ромба равны
10√29 и 4√29