Два участка земли огорожены заборами одинаковой длины. Первый участок имеет форму прямоугольника со сторонами 160 м и 150 м, а второй участок имеет форму квадрата.
Луч - прямая, ограниченная с одной стороны (имеет только начало) отрезок - прямая, ограниченная с двух сторон (имеет начало и конец) угол - фигура, образованная двумя лучами, исходящими из одной точки треугольник - выпуклая фигура, образованная тремя отрезками, соединяющие три точки, не лежащие на одной прямой перпендикуляр - луч, который образует с другим лучом угол в 90 градусов медиана - луч, который делит отрезок на два равных друг другу отрезка высота - перпендикуляр из определенного угла окружность - геометрическое место точек, удаленных от одной точки (центра окружности) на равное растояние св-ва равнобедренного треугольника - углы при основании равны, медиана является так же биссектрисой и высотой признаки параллельных прямых - если две прямые перпендикулярны одной и той же прямой, если при пересечении их третьей прямой, образуемые внутренние углы, лежащие накрест, будут равны признаки равенства треугольников - по двум сторонам и углу между ними, по трем сторонам, по стороне и двум прилежащим углам свойства прямоугольного треугольника - сумма острых углов равна 90 градусов, медиана к гипотенузе равна ее половине, катет против угла в 30 градусов равен половине гипотенузы, гипотенуза больше обоих катетов и меньше их суммы
Чертеж, я думаю, сумеешь сам нарисовать. Ромб с вершинами А, В, С, D Черти диагонали. Они пересекаются под прямым углом и в точке пересечения делятся пополам (как ромбу и полагается) . Диагонали АС и BD. Точка пересечения диагоналей О. Дано: АВ=50 см, т. к все стороны ромба равны, т. е. 200/4=50 Получились 4 прямоугольных треугольника, равных друг другу. S ромба = 4*S abo S abo=1/2AO*BO (площадь прямоугольного треугольника равна половине произведения катетов) Диагонами ромба относятся друг к другу как 3:4 Катеты треугольника АВО обозначаем как 3х и 4х (т. к. половины диагоналей тоже соотносятся друг с другом как 3:4) Т. О. получается прямоугольный треугольник с катетами 3х и 4х, и с гипотенузой 50 см. Согласно теореме Пифагора, квадрат гипотенузы равен сумме квадратов катетов. Гипотенуза = 50 см. Получаем: АВ=1/2АО*ВО 2500=(3х) 2+(4х) 2 2-это в квадрате 2500=9х2+16х2 2500=25х2 х2=100 х=10 S abo=1/2AO*BO AO=3x=30 см BO=4x=40 см S abo=1/2*30*40=600 S abcd=4*600=2400 ответ: площадь ромба = 2400 см2 Надеюсь, разберешься. Главное обозначь на чертеже вершины правильно. Кошмааар...
отрезок - прямая, ограниченная с двух сторон (имеет начало и конец)
угол - фигура, образованная двумя лучами, исходящими из одной точки
треугольник - выпуклая фигура, образованная тремя отрезками, соединяющие три точки, не лежащие на одной прямой
перпендикуляр - луч, который образует с другим лучом угол в 90 градусов
медиана - луч, который делит отрезок на два равных друг другу отрезка
высота - перпендикуляр из определенного угла
окружность - геометрическое место точек, удаленных от одной точки (центра окружности) на равное растояние
св-ва равнобедренного треугольника - углы при основании равны, медиана является так же биссектрисой и высотой
признаки параллельных прямых - если две прямые перпендикулярны одной и той же прямой, если при пересечении их третьей прямой, образуемые внутренние углы, лежащие накрест, будут равны
признаки равенства треугольников - по двум сторонам и углу между ними, по трем сторонам, по стороне и двум прилежащим углам
свойства прямоугольного треугольника - сумма острых углов равна 90 градусов, медиана к гипотенузе равна ее половине, катет против угла в 30 градусов равен половине гипотенузы, гипотенуза больше обоих катетов и меньше их суммы