1. а) Сумма внутренних углов треугольника равна 180°. Значит третий угол треугольника равен 180°-70°--55°=55°. В треугольнике два угла равны, значит треугольник равнобедренный с основанием ВС, так как равные углы прилежат к стороне ВС. б) Так как ВМ -перпендикуляр к АС, то треугольники АВМ и СВМ - прямоугольные. Сумма острых углов прямоугольного треугольника равна 90°, значит <АВМ=90°-70°=20°. <СВМ=90°-55°=35°. 2. а) Треугольники ВСО и ВСD равны по двум сторонам и углу между ними (АО=ОВ и СО=OD - дано, а <АОС =<BOD - вертикальные). Что и требовалось доказать. б) В равных треугольниках против равных сторон лежат равные углы. Следовательно, <ОАС=<OBD. Угол OBD=180°-20°-115°=45°. ответ: <ОАС=45°.
б) Так как ВМ -перпендикуляр к АС, то треугольники АВМ и СВМ - прямоугольные. Сумма острых углов прямоугольного треугольника равна 90°, значит <АВМ=90°-70°=20°. <СВМ=90°-55°=35°.
2. а) Треугольники ВСО и ВСD равны по двум сторонам и углу между ними (АО=ОВ и СО=OD - дано, а <АОС =<BOD - вертикальные).
Что и требовалось доказать.
б) В равных треугольниках против равных сторон лежат равные углы. Следовательно, <ОАС=<OBD. Угол OBD=180°-20°-115°=45°.
ответ: <ОАС=45°.
Диагонали ромба делят его на 4 равных прямоугольных треугольника,катеты которых равны половине диагоналей.Обозначим диагонали через.3х и 4х.Тогда катеты прямоугольных треугольников равны.3х/2=1,5х и 4х/2=2х.По теореме Пифагора находим гипотенузу треугольника,то есть сторону ромба: а^2=(1,5х)^2+(2х)^2=2,24x^2+4x^2=6,25x^2; а=2,5х
Перемитр ромба равен 4а=200.Отсюда а=200/4=50.
Поэтому 2,5х=50.Отсюда х=50/2,5=500/25=20.
1,5х=1,5*20=30
2х=2*20=40
Площадь ровна 4 площади равных прямоугольных треугольников,т.е.
S=4*1/2*30*40=2*1200=2400 см^2=24 дм^2
ответ: S=24 дм^2