Здесь может быть два варианта ответа. 1) Данный треугольник - вписанный. Тогда АС - диаметр окружности, и треугольник АВС - прямоугольный с прямым углов при вершине В, т.к. угол, опирающийся на диаметр, равен 90°. Если угол А=30, то угол С=90°-30°=60° ( из суммы острых углов прямоугольного треугольника) 2) Треугольник не вписан в окружность, просто АС проходит через её центр. . Тогда, даже если АС равна диаметру, задача не имеет решения, так как сумма углов В и С будет 180°-30°=150° градусов, но величина их может быть любой. (см. рисунок)------ Интересно, что задач с подобным условием много (только градусная мера угла разная), и нигде не отмечено, что данный треугольник - вписанный.
Призма, я так понимаю, прямая. Большая боковая грань - прямоугольник со стороной равной гипотенузе с треугольника основания (см.рис.). Меньший катет лежит против угла в 30° (против меньшего угла в треугольнике) => c=2•9=18 (см).Больший катет b=c•cos(30°)=18•√3/2=9√3 (см). Ребро (высота) призмы по Пифагору h=√[(18√2)²-c²]=√(18²•2-18²)=18 (см).Тогда площадь боковой поверхности призмы S будет равна сумме площадей трех прямоугольников:S=a•h+b•h+c•h=9•18 + 9√3 • 18 + 18•18=162•(3+√3)=162√3(√3+1) см².
1) Данный треугольник - вписанный.
Тогда АС - диаметр окружности, и треугольник АВС - прямоугольный с прямым углов при вершине В, т.к. угол, опирающийся на диаметр, равен 90°.
Если угол А=30, то угол С=90°-30°=60° ( из суммы острых углов прямоугольного треугольника)
2) Треугольник не вписан в окружность, просто АС проходит через её центр. . Тогда, даже если АС равна диаметру, задача не имеет решения, так как сумма углов В и С будет 180°-30°=150° градусов, но величина их может быть любой. (см. рисунок)------
Интересно, что задач с подобным условием много (только градусная мера угла разная), и нигде не отмечено, что данный треугольник - вписанный.