Две прямые касаются окружности с центром в точке o в точках m и n и пересекаются в точке k.найдите угол между этими прямыми,если угол mko равен 35 градусов. 45
Если вершину треугольника передвигать по прямой, параллельной основанию, то площадь при этом не измениться. Если два треугольника имеют одинаковые высоты, то отношение их площадей равно отношению длин оснований (сторон, на которые опущены эти высоты). Если два треугольника имеют общий угол, то их площади относятся как произведение сторон, заключающих этот угол. Отношение площадей подобных треугольников равны квадрату коэффициента подобия. Медиана треугольника делит его на две равновеликие части. Медианы треугольника делят его на три равновеликие части. Средние линии треугольника площади S отсекают от него треугольники площади Медианы треугольника делят его на 6 равновеликих частей.
1) Дано: прямоугольная трапеция ABCD, <B=<A=90°, AC - биссектриса=6см, <BAC=<CAD=45° Найти: S ABCD Решение: Проведём высоту СН. Из ΔАСН <ACH=180°-45°-90°=45°, ==>ΔACH - равнобедренный, Из ΔАВС <ACB=180°-45°-90°=45°, ==>ΔABC - равнобедренный, BC=AH, ==> AB=CH=BC=AH=a ==> ABCH - квадрат, тогда 6=а√2 а=3√2 Из ΔСНD tg60°= HD= S ΔCHD=1/2(3√2*√6)=1/2*6√3=3√3 S ABCH=a²=18 S ABCD=S ΔCHD+S ABCH=18+3√3 ответ: 18+3√3 2) Эту задачу невозможно решить без дополнительных условий, а именно без длины АК. Напишите длину и я напишу решение.
Если два треугольника имеют одинаковые высоты, то отношение их площадей равно отношению длин оснований (сторон, на которые опущены эти высоты).
Если два треугольника имеют общий угол, то их площади относятся как произведение сторон, заключающих этот угол.
Отношение площадей подобных треугольников равны квадрату коэффициента подобия.
Медиана треугольника делит его на две равновеликие части.
Медианы треугольника делят его на три равновеликие части.
Средние линии треугольника площади S отсекают от него треугольники площади Медианы треугольника делят его на 6 равновеликих частей.
Найти: S ABCD
Решение:
Проведём высоту СН.
Из ΔАСН
<ACH=180°-45°-90°=45°, ==>ΔACH - равнобедренный,
Из ΔАВС
<ACB=180°-45°-90°=45°, ==>ΔABC - равнобедренный,
BC=AH, ==> AB=CH=BC=AH=a ==>
ABCH - квадрат, тогда
6=а√2
а=3√2
Из ΔСНD
tg60°=
HD=
S ΔCHD=1/2(3√2*√6)=1/2*6√3=3√3
S ABCH=a²=18
S ABCD=S ΔCHD+S ABCH=18+3√3
ответ: 18+3√3
2) Эту задачу невозможно решить без дополнительных условий, а именно без длины АК. Напишите длину и я напишу решение.