трапеция АВСД, ВС=13, АД=27, СД=10, уголД=30, проводим высоту СН на АД, треугольник НСД прямоугольный, СН - высота трапеции=1/2СД=10/2=5 (катет лежит против угла 30=1/2 гипотенузы), Площадь АВСД=(ВС+АД)*СН/2=(13+27)*5/2=100
3. МК=МТ+КТ=5+10=15, периметр МКР=МК+КР+МР=15+9+12=36, полупериметр (р)=периметр/2=36/2=18, площадь МКР=корень(р*(р-МК)*(р-КР)*(р-МР))=корень(18*3*9*6)=54, проводим высоту РН на МК, РН=2*площадь МКР/МК=2*54/15=7,2, площадь МТР=1/2*МТ*РН=1/2*5*7,2=18, площадь КРТ=54-18=36
Найдите углы ромба ABCD, если его диагонали AC И BD равны 4корень из 3 метров и 4 метра. (Для ясности нужно добавить фразу "О - точка пересечения диагоналей. ").
Решение: Пусть угол BAO=альфа. Диагонали ромба делят его углы ПОПОЛАМ, значит, угол DAO= углу BAO =альфа. Диагонали ромба взаимно ПЕРПЕНДИКУЛЯРНЫ, И ТОЧКОЙ ПЕРЕСЕЧЕНИЯ ДЕЛЯТСЯ ПОПОЛАМ, следовательно в прямоугольном треугольнике ABO катет AO равен 2*(корень из 3) метрАМ, а катет ВО равен 2 метрАМ. Поэтому тангенс альфа=1/(корень из 3), (Здесь нужно добавить, значит альфа равно 30 градусам) , а угол BAD=2*30= 60 градусам, угол ADC= (180 градусов минус угол ВАD)=120 градусам.
ответ 60 и 120 градусов (или Пи/3 и 2*Пи/3 радиан) .
1. ABCD-трапеция:AB=CD.
BC=5см;AC=17см;AB=10см.
Найти:S.
Решение:1.Рассмотрим ABCD-трапецию:AB=CD.
Проведем BB1 и CC1 -высоты.
AB1=AC1=(AD-B1C1)/2=(17-5)/2=6(см).
2.Рассмотрим ΔABB1:<B1=90градусов.
По те-ме Пифагора:BB1²=AB²-AB1²=10²-6²=100-36=64.
BB1=8см.
3.S=((BC+AD)/2)*BB1=((5+17)/2)*8=88(см²).
ответ:88 см². (рисунок сделаешь сам, он не сложный)
2. Параллелограмм АВСД, АК=7, КД=15, АД=7+15=22, треугольник АВК прямоугольный равнобедренный, уголВ=90-уголА=90-45=45, угол А=угол АВК, АК=ВК=7, площадь АВСД=АД*ВК=22*7=154
трапеция АВСД, ВС=13, АД=27, СД=10, уголД=30, проводим высоту СН на АД, треугольник НСД прямоугольный, СН - высота трапеции=1/2СД=10/2=5 (катет лежит против угла 30=1/2 гипотенузы), Площадь АВСД=(ВС+АД)*СН/2=(13+27)*5/2=100
3. МК=МТ+КТ=5+10=15, периметр МКР=МК+КР+МР=15+9+12=36, полупериметр (р)=периметр/2=36/2=18, площадь МКР=корень(р*(р-МК)*(р-КР)*(р-МР))=корень(18*3*9*6)=54, проводим высоту РН на МК, РН=2*площадь МКР/МК=2*54/15=7,2, площадь МТР=1/2*МТ*РН=1/2*5*7,2=18, площадь КРТ=54-18=36
Объяснение:
Найдите углы ромба ABCD, если его диагонали AC И BD равны 4корень из 3 метров и 4 метра. (Для ясности нужно добавить фразу "О - точка пересечения диагоналей. ").
Решение: Пусть угол BAO=альфа. Диагонали ромба делят его углы ПОПОЛАМ, значит, угол DAO= углу BAO =альфа. Диагонали ромба взаимно ПЕРПЕНДИКУЛЯРНЫ, И ТОЧКОЙ ПЕРЕСЕЧЕНИЯ ДЕЛЯТСЯ ПОПОЛАМ, следовательно в прямоугольном треугольнике ABO катет AO равен 2*(корень из 3) метрАМ, а катет ВО равен 2 метрАМ. Поэтому тангенс альфа=1/(корень из 3), (Здесь нужно добавить, значит альфа равно 30 градусам) , а угол BAD=2*30= 60 градусам, угол ADC= (180 градусов минус угол ВАD)=120 градусам.
ответ 60 и 120 градусов (или Пи/3 и 2*Пи/3 радиан) .
Объяснение: