.1.Пусть О - середина отрезка АВ. Опустим перпендикуляры к плоскости из точек А, В и О, соответствующие точки на плоскости обозначим A', B' и O', отрезки АА', ВВ' и ОО' - параллельны.Так как проекция сохраняет отношение длин коллинеарных отрезков, то A'O'/O'B'=АО/ОВ=1, т.е.O' - середина A'B'. Получается, что А'АВВ' - трапеция, где А'А и В'В - основания, а О'О - её средняя линия. Длина средней линии трапеции равна полусумме длин её оснований.(2,4+7,6):2=5 (см)ответ: расстояние от середины отрезка АВ до плоскости 5 сантиметров.
2.Это надо провести на уровне 3 м от земли горизонтальную прямую до второго столба, и получится прямоугольный треугольник с гипотенузой 5 и катетом 6 - 3 = 3.Второй катет и есть расстояние между столбами. Он равен 4. Опять получился египетский треугольник со сторонами 3,4,5...
3.Прямая АВ, точка С. Рисуем треугольник АВС АВ = 17 см CB = 15 см Опускаем высоту СК на сторону АВ. Обозначим АК = х КВ = х-4 По теореме Пифагора CK^2 = AC^2 - AK^2 = CB^2 - KB^2 17^2 - x^2 = 15^2 - (x-4)^2 289 - x^2 = 225 - x^2 + 8x - 16 8x = 80 x = 10 х-4 = 6
4. По заданию треугольник равносторонний т. е AB=AC=BC=8 дм. Угол от прямой AD к пл-ти треугольника: /_DAC = /_DAB = /_DAM = 90* - (ПО ЗАДАНИЮ ПЕРПЕНДИКУЛЯР) Далее по теореме Пифагора ( /_ AMC = 90*); MC= BC/2; AM = sqrt( AC2 - MC2)= sqrt (8 - 4) = 6.928 дм. - точка M лежит на прямой BC. Вобщем AM - медиана и высота выпущенная из точки А и делящая сторону BC пополам. Расстояние от D до BC: DM= sqrt (AD2 + AM2)= sqrt (1 + 6.928)= 7 дм.,,, sqrt- это квадратный корень; 2- это квадрат. ; /_ - это угол.
(К примеру до точки С: ) DC = sqrt (AD2 + AC2) = sqrt (1 + 8) = 8,06225 дм.
Биссектриса угла треугольника делит сторону, которую пересекает, в отношении прилежащих сторон. Расмотрим треугольник АВН. АН:АВ= КН:ВК=16:20=4:5 Гипотенуза и один из катетов относятся как 5:4. Естественно предположить, что отношение всех сторон будет отношением сторон египетского треугольника , т.е. 5:4:3 Пусть коэффициент отношения будет х Тогда высота ВН=3х=36 см х=12 см АВ=5х=60 см АН=4х=48 см Отсюда АС=48*2=96 Р=60*2+96=216 см² -------------- Вариант решения через т. Пифагора: ВН²=АВ²-АН² 1296=25х²-16х²=9х² х=12 см АВ=60 см АС=48*2=96 см Р=216 см²
2.Это надо провести на уровне 3 м от земли горизонтальную прямую до второго столба, и получится прямоугольный треугольник с гипотенузой 5 и катетом 6 - 3 = 3.Второй катет и есть расстояние между столбами. Он равен 4. Опять получился египетский треугольник со сторонами 3,4,5...
3.Прямая АВ, точка С. Рисуем треугольник АВС
АВ = 17 см
CB = 15 см
Опускаем высоту СК на сторону АВ. Обозначим
АК = х
КВ = х-4
По теореме Пифагора
CK^2 = AC^2 - AK^2 = CB^2 - KB^2
17^2 - x^2 = 15^2 - (x-4)^2
289 - x^2 = 225 - x^2 + 8x - 16
8x = 80
x = 10
х-4 = 6
4. По заданию треугольник равносторонний т. е AB=AC=BC=8 дм.
Угол от прямой AD к пл-ти треугольника: /_DAC = /_DAB = /_DAM = 90* - (ПО ЗАДАНИЮ ПЕРПЕНДИКУЛЯР)
Далее по теореме Пифагора ( /_ AMC = 90*); MC= BC/2; AM = sqrt( AC2 - MC2)= sqrt (8 - 4) = 6.928 дм.
- точка M лежит на прямой BC. Вобщем AM - медиана и высота выпущенная из точки А и делящая сторону BC пополам.
Расстояние от D до BC: DM= sqrt (AD2 + AM2)= sqrt (1 + 6.928)= 7 дм.,,, sqrt- это квадратный корень; 2- это квадрат. ; /_ - это угол.
(К примеру до точки С: )
DC = sqrt (AD2 + AC2) = sqrt (1 + 8) = 8,06225 дм.
Расмотрим треугольник АВН.
АН:АВ= КН:ВК=16:20=4:5
Гипотенуза и один из катетов относятся как 5:4.
Естественно предположить, что отношение всех сторон будет отношением сторон
египетского треугольника , т.е. 5:4:3
Пусть коэффициент отношения будет х
Тогда высота ВН=3х=36 см
х=12 см
АВ=5х=60 см
АН=4х=48 см
Отсюда АС=48*2=96
Р=60*2+96=216 см²
--------------
Вариант решения через т. Пифагора:
ВН²=АВ²-АН²
1296=25х²-16х²=9х²
х=12 см
АВ=60 см
АС=48*2=96 см
Р=216 см²