Два треугольника называются подобными, если их углы соответственно равны и стороны одного треугольника пропорциональны сходственным сторонам другого. Число k, равное отношению сходственных сторон треугольника называется коэффициентом подобия. Через середину наибольшей стороны треугольника проведена прямая-зачит линия делит сторону пополам и k=1/2; А). 6,7,8
Б). 6,7,9
В). 6,7,10. Во всех трёх примерах наименьшая сторона равна 6,соотвественно-6/2=3 Поэтому решение одно во всех трёх случаях! ответ: наименьшая сторона отсеченного треугольника равна 3(один ответ во всех трёх случаях).
Пусть в треугольнике АВС медиана ВМ к стороне АС. Тогда угол ВМА равен альфа, а угол ВМА равен 180°-альфа. Мы знаем, что cos(180-a)=-cosa. Пусть сторона АВ=х, тогда сторона ВС=22-х (так как сумма сторон АВ+ВС=22, поскольку ПЕРИМЕТР равен 42, а сторона АС=20). В треугольнике АВС по теореме косинусов имеем: АВ(квадрат)=АМ(квадрат)+ВМ(квадрат)-2*АМ*ВМ*Cosa. (1) В треугольнике ВМС по этой же теореме: ВС^2=МС^2+ВМ^2-2*МС*ВМ*Cos(180°-a) или ВС^2=МС^2+ВМ^2+2МС*ВМ*Cosa. (2). Представим в (1) и (2) известные значения и просуммируем оба уравнения. Тогда получим: х^2=125-100Cosa + (22-x)^2=125+100Cosa равно х^2+(22-х)^2=250. Отсюда имеем квадратное уравнение, решая которое находим х. х^2-22х+117=0. Х1=11+√(121-117)=13. Х2=11-2=9. ответ: боковые стороны треугольника равны 13 и 9.
P.S. Извиняюсь за текст. Планшетом еще не достаточно овладел.
Два треугольника называются подобными, если их углы соответственно равны и стороны одного треугольника пропорциональны сходственным сторонам другого.
Число k, равное отношению сходственных сторон треугольника называется коэффициентом подобия.
Через середину наибольшей стороны треугольника проведена прямая-зачит линия делит сторону пополам и k=1/2;
А). 6,7,8
Б). 6,7,9
В). 6,7,10.
Во всех трёх примерах наименьшая сторона равна 6,соотвественно-6/2=3
Поэтому решение одно во всех трёх случаях!
ответ: наименьшая сторона отсеченного треугольника равна 3(один ответ во всех трёх случаях).
Мы знаем, что cos(180-a)=-cosa.
Пусть сторона АВ=х, тогда сторона ВС=22-х (так как сумма сторон АВ+ВС=22, поскольку ПЕРИМЕТР равен 42, а сторона АС=20).
В треугольнике АВС по теореме косинусов имеем:
АВ(квадрат)=АМ(квадрат)+ВМ(квадрат)-2*АМ*ВМ*Cosa. (1)
В треугольнике ВМС по этой же теореме:
ВС^2=МС^2+ВМ^2-2*МС*ВМ*Cos(180°-a) или
ВС^2=МС^2+ВМ^2+2МС*ВМ*Cosa. (2).
Представим в (1) и (2) известные значения и просуммируем оба уравнения.
Тогда получим:
х^2=125-100Cosa + (22-x)^2=125+100Cosa равно
х^2+(22-х)^2=250. Отсюда имеем квадратное уравнение, решая которое находим х.
х^2-22х+117=0.
Х1=11+√(121-117)=13.
Х2=11-2=9.
ответ: боковые стороны треугольника равны 13 и 9.
P.S. Извиняюсь за текст. Планшетом еще не достаточно овладел.