Рисунок без буквенных обозначений (кроме C,O,M), обозначишь, если нужно как угодно, хотя всё понятно и так. Для удобства и быстроты всей писанины введём буквенные обозначения -сторона основания, - апофема, - высота основания. Эти три величины потребуются для всего вычисления. МО=3, как катет, лежащий против угла в 30° Для Δ-ка, лежащего в основании медианы, биссектрисы, высоты совпадают, а точка их пересечения О- является центром основания. Далее вспоминаем свойство медиан Δ-ка: Медианы треугольника пересекаются в одной точке, и делятся этой точкой на две части в отношении 2:1, считая от вершины. Поэтому Теперь находим :
...Ну и как "Лучший ответ" не забудь отметить, ОК?!.. ;)
Вот решение, попробуйте разобраться. :) Если повернуть фигуру вместе с точкой M на 60° вокруг центра окружности, то точка M перейдет в точку N, лежащую уже на дуге BC (треугольник при этом перейдет сам в себя). Ясно, что NB = MA, NC = MB. Поэтому MBNC - равнобедренная трапеция (то есть MC II BN); (внимание, это предложение и есть, собственно, решение задачи) Поскольку угол этой трапеции при основании MC равен 60° независимо от положения точки M (это вписанный угол, опирающийся на дугу в 120°), проекции равных боковых сторон MB и NC на основание MC равны их половинам, откуда и следует, что основание MC равно сумме второго основания NB = MA и боковой стороны NC = MB; то есть MC = MA + MB
Для удобства и быстроты всей писанины введём буквенные обозначения -сторона основания, - апофема, - высота основания. Эти три величины потребуются для всего вычисления.
МО=3, как катет, лежащий против угла в 30°
Для Δ-ка, лежащего в основании медианы, биссектрисы, высоты совпадают, а точка их пересечения О- является центром основания.
Далее вспоминаем свойство медиан Δ-ка:
Медианы треугольника пересекаются в одной точке, и делятся этой точкой на две части в отношении 2:1, считая от вершины.
Поэтому
Теперь находим :
...Ну и как "Лучший ответ" не забудь отметить, ОК?!.. ;)
Если повернуть фигуру вместе с точкой M на 60° вокруг центра окружности, то точка M перейдет в точку N, лежащую уже на дуге BC (треугольник при этом перейдет сам в себя). Ясно, что NB = MA, NC = MB.
Поэтому MBNC - равнобедренная трапеция (то есть MC II BN); (внимание, это предложение и есть, собственно, решение задачи)
Поскольку угол этой трапеции при основании MC равен 60° независимо от положения точки M (это вписанный угол, опирающийся на дугу в 120°), проекции равных боковых сторон MB и NC на основание MC равны их половинам, откуда и следует, что основание MC равно сумме второго основания NB = MA и боковой стороны NC = MB;
то есть MC = MA + MB