Ну смотри: Т.к. трапеция у нас равнобедренная, мы опустим высоты от концов меньшего основания к большему, мы получим 2 равных треугольника и прямоугольник. т.к. у нас получится прямоугольник и 2 равных треугольника нижнее основание разделится на 10 и ещё 2 равных отрезка, т.к. у нас остаётся всего 8, значит 8/2=4, значит у нас получится прямоугольный треугольник со сторонами 5(гипотенуза) и 4(катет), т.к. это египетский треугольник третья сторона(она же высота) равна 3, площадь трапеции равна полусумме оснований на высоту, то есть: (10+18)/2*3=42. ответ:42
Периметр ромба равен 8 м.
Объяснение:
В ромбе диагонали взаимно перпендикулярны и являются биссектрисами углов. Следовательно ∠KEL = ∠EKL.
∠EOA = ∠EKL (дано). =>
∠KEL = ∠EAO => треугольник EOA равнобедренный.
Кроме того, АВ║LK║EF (так ∠EOA = ∠EKL соответствкнные углы при АВ и LK и секущей ЕК).
Значит ЕА = АО =1м.
АО = ОВ (так как точка О - точка пересечения диагоналей ромба).
AEFB - параллелограмм (так как АВ║EF и EA║FB). =>
EF =AB = 2·AO = 2 м.
Итак, сторона ромба равна 2м, тогда его периметр равен 8м (стороны ромба равны).
Т.к. трапеция у нас равнобедренная, мы опустим высоты от концов меньшего основания к большему, мы получим 2 равных треугольника и прямоугольник.
т.к. у нас получится прямоугольник и 2 равных треугольника нижнее основание разделится на 10 и ещё 2 равных отрезка, т.к. у нас остаётся всего 8, значит 8/2=4, значит у нас получится прямоугольный треугольник со сторонами 5(гипотенуза) и 4(катет), т.к. это египетский треугольник третья сторона(она же высота) равна 3, площадь трапеции равна полусумме оснований на высоту, то есть:
(10+18)/2*3=42. ответ:42