Если все грани наклонены под одинаковыми углами, то высота пирамиды падает в центр вписанной окружности, то есть в точку О пересечения биссектрис треугольника. Треугольник со сторонами 5, 12 и 13 - прямоугольный, угол С - прямой. AC = 5; BC = 12; AB = 13 Периметр треугольника P = 5 + 12 + 13 = 30; площадь S = 5*12/2 = 30 Найдем радиус вписанной окружности. r = OK = OM = ON = 2S/P = 2*30/30 = 2 см Высота H = OD = 4√2 см Апофемы, перпендикулярные к ребрам основания DK = DM = DN = √(r^2 + H^2) = √(4 + 16*2) = √36 = 6 см Площади боковых граней S(ABD) = DN*AB/2 = 6*13/2 = 3*13 = 39 кв.см. S(ACD) = DK*AC/2 = 6*5/2 = 3*5 = 15 кв.см. S(BCD) = DM*BC/2 = 6*12/2 = 6*6 = 36 кв.см. S(бок) = S(ABD) + S(ACD) + S(BCD) = 39 + 15 + 36 = 90 кв.см.
S основания цилиндра = πR²
R=6, т.к. диаметр окружности равен стороне квадрата равной 12
S=6²π=36π
ответ: площадь основания цилиндра равна 36π
S боковой поверхности цилиндра = 2πRh
уже известно что R=6
высота равна стороне квадрата, т.е. h=12
S=2*12*6π=144π
ответ: площадь боковой поверхности цилиндра равна 144π
S всей поверхности цилиндра = 2Sосн+Sбок
зная что Sосн=36π, а Sбок=144π, получаем:
S=2*36π+144π=72π+144π=216π
ответ: площадь всей поверхности цилиндра равна 216π
V цилиндра = πR²h
R=6, h=12 →
V=36*12π=432π
ответ: обьем цилиндра равен 432π
Треугольник со сторонами 5, 12 и 13 - прямоугольный, угол С - прямой.
AC = 5; BC = 12; AB = 13
Периметр треугольника P = 5 + 12 + 13 = 30; площадь S = 5*12/2 = 30
Найдем радиус вписанной окружности.
r = OK = OM = ON = 2S/P = 2*30/30 = 2 см
Высота H = OD = 4√2 см
Апофемы, перпендикулярные к ребрам основания
DK = DM = DN = √(r^2 + H^2) = √(4 + 16*2) = √36 = 6 см
Площади боковых граней
S(ABD) = DN*AB/2 = 6*13/2 = 3*13 = 39 кв.см.
S(ACD) = DK*AC/2 = 6*5/2 = 3*5 = 15 кв.см.
S(BCD) = DM*BC/2 = 6*12/2 = 6*6 = 36 кв.см.
S(бок) = S(ABD) + S(ACD) + S(BCD) = 39 + 15 + 36 = 90 кв.см.