ответ:1. ΔBDC, вписанный в окружность можно представить как <BDC что опирается на хорду ВС.
В ΔСАВ <САВ тоже опирается на отрезок ВС, причем <САВ=<BDC по условию. По теореме о вписанных углах в окружность равные углы опираются на одну и ту же хорду. Значит ΔСАВ вписан в туже окружность с площадью S=25π/4.
Определим радиус:
S=π·r² ⇒ r=√S/π
r=√25π/4π=5/2=2.5
2. Рассмотрим чет. ABCD. Все четыре точки лежат на одной окружности, значит четырехугольник вписан в данную окружность.
Вписать можно только тот выпуклый четырехугольник у которого сумма противоположных углов равна 180°. То есть
<BAD+<BCD=180° <BCD=180°-90°=90°
Выпуклый четырехугольник с двумя противоположными прямыми углами являевся прямоугольником.
2.\begin{gathered}\vec{BN}=\vec{BD}+\vec{DN}=\vec d +\frac{1}{2}\vec{DS}=\vec d+\frac{1}{2}(\vec{BS}-\vec{BD})=\\=\vec d+\frac{1}{2}\vec{BS}-\frac{1}{2}\vec d=\frac{1}{2}\vec d+\frac{1}{2}(\frac{1}{2}(\vec{BA}+\vec{BC}))=\frac{1}{2}\vec d + \frac{1}{4}\vec a + \frac{1}{4}\vec c\end{gathered}BN=BD+DN=d+21DS=d+21(BS−BD)==d+21BS−21d=21d+21(
ответ:1. ΔBDC, вписанный в окружность можно представить как <BDC что опирается на хорду ВС.
В ΔСАВ <САВ тоже опирается на отрезок ВС, причем <САВ=<BDC по условию. По теореме о вписанных углах в окружность равные углы опираются на одну и ту же хорду. Значит ΔСАВ вписан в туже окружность с площадью S=25π/4.
Определим радиус:
S=π·r² ⇒ r=√S/π
r=√25π/4π=5/2=2.5
2. Рассмотрим чет. ABCD. Все четыре точки лежат на одной окружности, значит четырехугольник вписан в данную окружность.
Вписать можно только тот выпуклый четырехугольник у которого сумма противоположных углов равна 180°. То есть
<BAD+<BCD=180° <BCD=180°-90°=90°
Выпуклый четырехугольник с двумя противоположными прямыми углами являевся прямоугольником.
S=a·b=3·√16-9=3√7(кв.ед.)
Объяснение:
параллелепипеде верны следующие равенства:
\begin{gathered}\vec{AB}=\vec{A_1B_1}=\vec{DC}=\vec{D_1C_1}\\\vec{BC}=\vec{B_1C_1}=\vec{AD}=\vec{A_1D_1}\\\vec{AA_1}=\vec{BB_1}=\vec{DD_1}=\vec{CC_1}\\\end{gathered}AB=A1B1=DC=D1C1BC=B1C1=AD=A1D1AA1=BB1=DD1=CC1
следовательно
\begin{gathered}\vec{AB}+\vec{B_1C_1}+\vec{DD_1}+\vec{CD}=\vec{AB}+\vec{BC}+\vec{CD}+\vec{DD_1}=\vec{AD_1}vec{BD_1}-\vec{B_1C_1}=\vec{BD_1}-\vec{BC}=\vec{CD_1}\end{gathered}AB+B1C1+DD1+CD=AB+BC+CD+DD1=AD1BD1−B1C1=BD1−BC=CD1
2.\begin{gathered}\vec{BN}=\vec{BD}+\vec{DN}=\vec d +\frac{1}{2}\vec{DS}=\vec d+\frac{1}{2}(\vec{BS}-\vec{BD})=\\=\vec d+\frac{1}{2}\vec{BS}-\frac{1}{2}\vec d=\frac{1}{2}\vec d+\frac{1}{2}(\frac{1}{2}(\vec{BA}+\vec{BC}))=\frac{1}{2}\vec d + \frac{1}{4}\vec a + \frac{1}{4}\vec c\end{gathered}BN=BD+DN=d+21DS=d+21(BS−BD)==d+21BS−21d=21d+21(