обозначим вершины ромба буквами a, b, c, d. буквой o обозначим точку пересечения диагоналей.
угол dab = 120о. отсюда следует, угол oab = 60о, так как диагональ ас делит угол пополам.
так как у нас ромб разбит на прямоугольные треугольники, рассмотрим треугольник oab.
мы знаем, что угол oab = 60о. значит угол аво = 30о.
так как в точке пересечения диагонали ромба делятся пополам, имеем ао = 0,5 ас. получаем ао = 0,5 * 4,5 = 2,25 см.
напротив угла 30о лежит катет. что равен половине гипотенузы.
если ао = 2,25 см, то ав, являясь гипотенузой прямоугольного треугольника, будет равна 2 * ао
ав = 2 * 2,25 = 4,5 см.
нам известно, что у ромба все стороны равны.
периметр ромба составит р = 4 *ав, з = 4 * 4,5 см = 18 см.
ответ: периметр ромба составляет 18 см
√5,89
Объяснение:
Вот рисунок.
Отрезок AM = m (медиана) дает 4 прямоугольных треугольника.
Так как M - середина BC, то BM = CM = d.
По теореме Пифагора для этих треугольников:
{ m^2 = (5-b)^2 + 2^2 = 25 - 10b + b^2 + 4
{ d^2 = 2^2 + b^2 = 4 + b^2
{ m^2 = (4-c)^2 + x^2 = 16 - 8c + c^2 + x^2
{ d^2 = x^2 + c^2
Подставляем 2 уравнение в 1 уравнение, а 4 уравнение в 3 уравнение:
{ m^2 = 25 - 10b + d^2
{ m^2 = 16 - 8c + d^2
Приравниваем правые части:
25 - 10b + d^2 = 16 - 8c + d^2
Приводим подобные:
10b - 8c = 9
b = (8c + 9)/10
Так как мы не знаем угол А, то и не можем вычислить b и с.
Можем только найти их соотношение друг к другу.
Например, при c = 1 будет b = (8 + 9)/10 = 1,7
Тогда приравняем правые части во 2 и 4 уравнениях:
4 + b^2 = x^2 + c^2
И подставим найденные значения:
4 + 1,7^2 = x^2 + 1^2
x^2 = 4 + 2,89 - 1 = 5,89
x = √5,89 ≈ 2,427
обозначим вершины ромба буквами a, b, c, d. буквой o обозначим точку пересечения диагоналей.
угол dab = 120о. отсюда следует, угол oab = 60о, так как диагональ ас делит угол пополам.
так как у нас ромб разбит на прямоугольные треугольники, рассмотрим треугольник oab.
мы знаем, что угол oab = 60о. значит угол аво = 30о.
так как в точке пересечения диагонали ромба делятся пополам, имеем ао = 0,5 ас. получаем ао = 0,5 * 4,5 = 2,25 см.
напротив угла 30о лежит катет. что равен половине гипотенузы.
если ао = 2,25 см, то ав, являясь гипотенузой прямоугольного треугольника, будет равна 2 * ао
ав = 2 * 2,25 = 4,5 см.
нам известно, что у ромба все стороны равны.
периметр ромба составит р = 4 *ав, з = 4 * 4,5 см = 18 см.
ответ: периметр ромба составляет 18 см
√5,89
Объяснение:
Вот рисунок.
Отрезок AM = m (медиана) дает 4 прямоугольных треугольника.
Так как M - середина BC, то BM = CM = d.
По теореме Пифагора для этих треугольников:
{ m^2 = (5-b)^2 + 2^2 = 25 - 10b + b^2 + 4
{ d^2 = 2^2 + b^2 = 4 + b^2
{ m^2 = (4-c)^2 + x^2 = 16 - 8c + c^2 + x^2
{ d^2 = x^2 + c^2
Подставляем 2 уравнение в 1 уравнение, а 4 уравнение в 3 уравнение:
{ m^2 = 25 - 10b + d^2
{ m^2 = 16 - 8c + d^2
Приравниваем правые части:
25 - 10b + d^2 = 16 - 8c + d^2
Приводим подобные:
10b - 8c = 9
b = (8c + 9)/10
Так как мы не знаем угол А, то и не можем вычислить b и с.
Можем только найти их соотношение друг к другу.
Например, при c = 1 будет b = (8 + 9)/10 = 1,7
Тогда приравняем правые части во 2 и 4 уравнениях:
4 + b^2 = x^2 + c^2
И подставим найденные значения:
4 + 1,7^2 = x^2 + 1^2
x^2 = 4 + 2,89 - 1 = 5,89
x = √5,89 ≈ 2,427