ОПРЕДЕЛЕНИЕ 1 Если точка начала какого-либо вектора , то говорят, что вектор отложен от точки (рис. 1).
сложение векторов по правилу параллелограмма или треугольника
ТЕОРЕМА 1 От любой точки можно отложить вектор единственный .
Существование: Имеем два следующих случая:
Вектор - нулевой.
Здесь получаем, что искомый нами вектор совпадает с вектором .
Вектор не является нулевым.
Пусть точка является началом вектора , а точкой - конец вектора . Проведем через точку прямую параллельную вектору . Будем откладывать на прямой отрезки и . Рассмотрим векторы и . Из этих двух векторов нужный нам вектор -- вектор, сонаправленный с вектором (рис.2)
Рисунок 2.
Из данного выше построения сразу же будет следовать единственность данного вектора.
Сумма векторов. Сложение векторов. Правило треугольника
СУММОЙ ДВУХ ВЕКТОРОВ и называется третий вектор , проведенный из начала к концу , если начало вектора совпадает с концом вектора .
Сложение векторов выполняется по правилу треугольника или по правилу параллелограмма.
сложение векторов по правилу параллелограмма или треугольника
СУММОЙ НЕСКОЛЬКИХ ВЕКТОРОВ ,, называется вектор , получающийся в результате последовательного сложения данных векторов.
Такая операция выполняется по правилу многоугольника.
сумма нескольких векторов
КОММУТАТИВНЫЙ ЗАКОН СЛОЖЕНИЯ
АССОЦИАТИВНЫЙ ЗАКОН СЛОЖЕНИЯ
СУММА ВЕКТОРОВ В КООРДИНАТАХ
При сложении двух векторов соответствующие координаты складываются.
Отметим несколько свойств сложения двух векторов:
Для произвольного вектора выполняется равенство
Для произвольных точек
и
справедливо следующее равенство
ЗАМЕЧАНИЕ Таким также можно строить сумму любого числа векторов. Тогда оно будет носить название правила многоугольника.
сумма нескольких векторов
Разность векторов. Вычитание векторов
РАЗНОСТЬЮ ДВУХ ВЕКТОРОВ и называется вектор при условии:
, если
РАЗНОСТЬ ВЕКТОРОВ и равна сумме вектора и противоположного вектора :
вычитание векторов
РАЗНОСТЬ ДВУХ ОДИНАКОВЫХ ВЕКТОРОВ равна НУЛЕВОМУ ВЕКТОРУ :
Векторы: , , , ,
Нулевой вектор:
Координаты векторов: , , , , ,
ОПРЕДЕЛЕНИЕ 1 Если точка начала какого-либо вектора , то говорят, что вектор отложен от точки (рис. 1).
сложение векторов по правилу параллелограмма или треугольника
ТЕОРЕМА 1 От любой точки можно отложить вектор единственный .
Существование: Имеем два следующих случая:
Вектор - нулевой.
Здесь получаем, что искомый нами вектор совпадает с вектором .
Вектор не является нулевым.
Пусть точка является началом вектора , а точкой - конец вектора . Проведем через точку прямую параллельную вектору . Будем откладывать на прямой отрезки и . Рассмотрим векторы и . Из этих двух векторов нужный нам вектор -- вектор, сонаправленный с вектором (рис.2)
Рисунок 2.
Из данного выше построения сразу же будет следовать единственность данного вектора.
Сумма векторов. Сложение векторов. Правило треугольника
СУММОЙ ДВУХ ВЕКТОРОВ и называется третий вектор , проведенный из начала к концу , если начало вектора совпадает с концом вектора .
Сложение векторов выполняется по правилу треугольника или по правилу параллелограмма.
сложение векторов по правилу параллелограмма или треугольника
СУММОЙ НЕСКОЛЬКИХ ВЕКТОРОВ ,, называется вектор , получающийся в результате последовательного сложения данных векторов.
Такая операция выполняется по правилу многоугольника.
сумма нескольких векторов
КОММУТАТИВНЫЙ ЗАКОН СЛОЖЕНИЯ
АССОЦИАТИВНЫЙ ЗАКОН СЛОЖЕНИЯ
СУММА ВЕКТОРОВ В КООРДИНАТАХ
При сложении двух векторов соответствующие координаты складываются.
Отметим несколько свойств сложения двух векторов:
Для произвольного вектора выполняется равенство
Для произвольных точек
и
справедливо следующее равенство
ЗАМЕЧАНИЕ Таким также можно строить сумму любого числа векторов. Тогда оно будет носить название правила многоугольника.
сумма нескольких векторов
Разность векторов. Вычитание векторов
РАЗНОСТЬЮ ДВУХ ВЕКТОРОВ и называется вектор при условии:
, если
РАЗНОСТЬ ВЕКТОРОВ и равна сумме вектора и противоположного вектора :
вычитание векторов
РАЗНОСТЬ ДВУХ ОДИНАКОВЫХ ВЕКТОРОВ равна НУЛЕВОМУ ВЕКТОРУ :
1. 15 см.
2. 31,75 см².
3. 36 м².
4. 21 кв. ед.
5. 113,4 см².
6. 6 см.
7. 50 см².
8. 27 см².
9. 7 см.
Объяснение:
1. Пусть меньший катет равен 2х. Тогда больший равен 5х.
S=1/2(ah)=1/2(2x*5x)=(1/2)10x²=5x²;
5x²=45;
x²=9;
х=±3; (-3 - не соответствует условию) .
х=3 см.
Больший катет равен 5х=5*3=15 см.
***
Площадь треугольника вычисляется по формуле:
S=1/2 ah;
S=12.7*5/2= 31.75см².
***
3. ABCD - прямоугольная трапеция. ∠А=∠В=90°. ВС=7 м, AD=11 м.
∠D=45°. Высота СЕ отсекает равносторонний треугольник СЕD, у которого ∠D=45°, CE⊥AD.
ED=CE=AD-BC=11-7=4 м.
S=h(a+b)/2=4(7+11)/2=2*18=36 м².
***
4. Есть несколько вычисления площадей фигур на клетчатой бумаге. Предложу свой.
Дополним параллелограмм до прямоугольника и вычтем площади дополнительных треугольников (см. приложение).
S=S(прямоугольника) - 2S(треугольника);
S=5*7-2(2*7)/2=35-14= 21 кв. ед.
***
5. S=ah, где а=16,2 см. Найдем h.
BE/AB=Sin 30°;
BE=AB*Sin30° =14*(1/2)=7 см.
S=16.2*7=113.4 см²
***
6. Площадь ромба по его диагоналям:
S=D*d/2;
d=2S/D=2*24/8=48/8=6 см.
***
7. Пусть сторона квадрата равна а см.
Найдем а: 5²= а²+а²; 2а²=5²; а=√(5²)/2=5√2 см;
S=a²=(5√2)²=50 см².
***
8. Пусть одна сторона равна х тогда вторая равна 3х.
Р(ABCD)=2(AB+BC);
2(x+3x)=24;
4x=12;
x=3 см - меньшая сторона (AB).
Большая сторона равна 3х=3*3=9 см (BC).
Площадь равна S=AB*BC=3*9=27 см².
***
9. S(ABC)=(1/2)AB*CE=1/2*14*10=70 см².
Ту же площадь можно найти по формуле:
S=1/2(BC*AF), где AF - высота, проведенная к стороне ВС
1/2(20*AF)=70;
20*AF=140;
AF=140/20=7 см.