1) правильная четыхугольная призма- в основании квадрат, боковые стороны перпендикулярны основанию. сечение, которое проходит через ребро AA1 и вершину С- прямоугольный треульник A1AC, найдем сторону AC=4sqrt2 прощадь треульльника=1/2*высота*основание=1/2*5*4sqrt2=10sqrt2
2)правильная трехугольная призма- в основании правильынй треульник, боковые стороны перпендикулярны основанию. диагональ бок.грани под углом 60градусов, треугольник ABB1-прямоугольный=> 1/2=3/AB1 (AB1-диагональ бок.грани)=> AB1=6 находим боковое ребро: 6=3+BB1^2 (Т.Пифагора)=> BB1=sqrt3 площадь бок.поверхности призмы=3(BB1*AB)=3*sqrt3*3=9sqrt3
задание 2 Правило существует В прямоугольном треугольнике высота , проведенная из вершины прямого угла , разбивает его на два треугольника , подобных исходному.
задание 1 внешний угол треугольника равен сумме двух углов не смежных с ним, то А+В= 60 . Треугольник АВС равнобедренный и углы при основании равны, то есть А=В=30 проведем из угла С высот. СН. Тогда угол НСА равен 30 градусов, катет лежащий против угла 30 гр. равен половине гипотенузы. следовательно СН=1/2АС=1/2 * 37 = 18,5 см.
сечение, которое проходит через ребро AA1 и вершину С- прямоугольный треульник A1AC, найдем сторону AC=4sqrt2
прощадь треульльника=1/2*высота*основание=1/2*5*4sqrt2=10sqrt2
2)правильная трехугольная призма- в основании правильынй треульник, боковые стороны перпендикулярны основанию.
диагональ бок.грани под углом 60градусов, треугольник ABB1-прямоугольный=> 1/2=3/AB1 (AB1-диагональ бок.грани)=> AB1=6
находим боковое ребро: 6=3+BB1^2 (Т.Пифагора)=> BB1=sqrt3
площадь бок.поверхности призмы=3(BB1*AB)=3*sqrt3*3=9sqrt3
задание 2 Правило существует В прямоугольном треугольнике высота , проведенная из вершины прямого угла , разбивает его на два треугольника , подобных исходному.
задание 1 внешний угол треугольника равен сумме двух углов не смежных с ним, то А+В= 60 . Треугольник АВС равнобедренный и углы при основании равны, то есть А=В=30 проведем из угла С высот. СН. Тогда угол НСА равен 30 градусов, катет лежащий против угла 30 гр. равен половине гипотенузы. следовательно СН=1/2АС=1/2 * 37 = 18,5 см.