ГЕОМЕТРИЯ 10 КЛАСС дан параллелограмм авсд, сторона ад лежит в плоскости альфа вс, не лежит в плоскости альфа покажите что вс параллельна плоскости альфа
АВ=ВС, т.к. треугольник равнобедренный, а АС - основание. ВК=2, АК=8, тогда, АВ=10. Центр вписанной окружности лежит в точке пересечения биссектрис треугольника, проведём биссектрису ВН: точка Н совпадёт с точкой касания окружности на стороне АС, т.к. в биссектриса, проведённая из угла В, является и высотой, и медианой, т.е. угол АНС = 90 градусов. АН=АК, т.к. отрезки касательных, проведённых из одной точки, равны, т.е. АН=8, тогда АС=16. В прямоугольном треугольнике АВН АВ=10, АН=8, тогда по теореме Пифагора ВН=6. Найдём площадь треугольника: 1/2 * АС * ВН = 1/2 * 16 * 6 = 42.
см²
Объяснение:
Дано (см. рисунок):
Параллелограмм ABCD
AB = 3 см
BC = 5 см
α = ∠BAE – острый угол параллелограмма
tgα = 2
Найти: площадь параллелограмма S.
Решение. Проведём высоту h = BE = DF параллелограмма и введём обозначение x = AE = CF. По определению
Отсюда
h = tgα·x = 2·x.
Так как треугольник ABE прямоугольный с гипотенузой AB, то можно применит теорему Пифагора:
AB² = AE² + BE² или 3² = x² + h² или 3² = x² + (2·x)².
Отсюда
5·x² = 9 или x = 3/√5.
Площадь параллелограмма определяется через сторону AD и высоту h по формуле:
S = AD·h.
Тогда
S = AD·h = 5·h = 5·2·x = 5·2·3/√5 = 6√5 см².
ВК=2, АК=8, тогда, АВ=10.
Центр вписанной окружности лежит в точке пересечения биссектрис треугольника, проведём биссектрису ВН: точка Н совпадёт с точкой касания окружности на стороне АС, т.к. в биссектриса, проведённая из угла В, является и высотой, и медианой, т.е. угол АНС = 90 градусов.
АН=АК, т.к. отрезки касательных, проведённых из одной точки, равны, т.е. АН=8, тогда АС=16.
В прямоугольном треугольнике АВН АВ=10, АН=8, тогда по теореме Пифагора ВН=6.
Найдём площадь треугольника: 1/2 * АС * ВН = 1/2 * 16 * 6 = 42.