1). Биссектриса СК делит угол С на два равных: АСК и КСВ. Зная угол НСК между высотой и биссектрисой, находим угол АСН:<ACH = <ACK - <HCK = 45 - 15 = 30°.В прямоугольном треугольнике АНС находим оставшийся неизвестный угол А:<A = 180 - ACH - AHC = 180 - 30 - 90 = 60°.Зная углы А и С, находим неизвестный угол В:<B = 180 - <C - <A = 180 - 90 - 60 = 30°.Зная, что катет прямоугольного треугольника, лежащий против угла в 30 градусов равен половине гипотенузы, находим АС:АС = 1/2 АВ = 1/2*14 = 7 см. 2) Поскольку в равнобедренном треугольнике углы при основании равны, находим угол А и С:<A = <C = (180 - 120) : 2 = 30°После построения высоты АН получаем прямоугольный треугольник АНС. Его неизвестный катет АН (наша высота) лежит против угла 30 градусов и равен половине гипотенузы:АН = АС : 2 = 12 : 2 = 6 см Подробнее - на -
2) Поскольку в равнобедренном треугольнике углы при основании равны, находим угол А и С:<A = <C = (180 - 120) : 2 = 30°После построения высоты АН получаем прямоугольный треугольник АНС. Его неизвестный катет АН (наша высота) лежит против угла 30 градусов и равен половине гипотенузы:АН = АС : 2 = 12 : 2 = 6 см
Подробнее - на -
sinACA1=12/13 =sinBDB1
BB1=BD*sinBDB1=39*(12/13)=36
2) a) Проведём СЕ⊥АВ и DE⊥AB.
АЕ=ВЕ=1/2*АВ=1/2*16=8 , т.к. АВС - равнобедренный, Е - середина АВ.
DE - тоже высота , медиана и биссектриса, т.к. АВD - равнобедренный, AD=BD.
СЕ²=АС²-АЕ²=17²-8²=225 , СЕ=15
∠ADB=90° по условию, ∠BDE=45° ⇒ ∠DBE=45° ⇒ ΔBDE - равнобедренный, DE=BE=8 .
ΔCDE: CE⊥AB и DE⊥AB ⇒ ∠CED=60° ,
CD²=CE²+DE²-2*CE*DE*cos60°=15²+8²-2*15*8*0,5=169
CD=13
б) ∠СD=180°-60°=120° ⇒
CD²=15²+8²-2*15*8*cos120°=15²+8²+2*15*8*0,5=409
CD=√409
ответ: 13 или √409.