Объем призмы вычисляют произведением площади её основания на высоту. V=SH Так как данные призмы имеют равную высоту, отношение их объёмов будет отношением площадей их оснований. Основание правильной шестиугольной призмы состоит из 6 правильных треугольников. Поэтому отношение площади основания меньшей призмы к площади основания исходной равно отношению площади одного треугольника меньшего основания к площади одного треугольника большего основания. Рассмотрим приложенный рисунок основания призмы. Сторона ОН меньшего основания является высотой треугольника АОВ. Из 6 таких треугольников состоит большее основание. Пусть сторона АО=а. Тогда ОН=а*sin(60°)=а√3):2 Коэффициент подобия треугольников НОМ и АОВ= НО:АО=(а√3):2):а=(√3):2 Отношение площадей подобных фигур равно квадрату коэффициента их подобия: S НОМ: S АОВ=[(√3):2)]²=3/4 Следовательно, искомый объём равен 3/4 от V, т.е. 3V/4
№2. Высота правильной четырехугольной пирамиды равна 12 см, а апофема – 15 см. Вычислить площадь боковой поверхности пирамиды.
Апофема – высота боковой грани правильной пирамиды, следовательно, QH⊥CD. По т. о 3-х перпендикулярах ОН⊥CD.
По т.Пифагора ОН=9 ( можно обойтись без вычислений, т.к. ∆ QOH- египетский, где отношение катет:гипотенуза=4:5).
ОН - половина АD, ⇒АD=2OH=18 (см)
Площадь боковой поверхности правильной пирамиды равна произведению апофемы на полупериметр основания.
S=15•18•4:2=540 см².
————————
№3. Условие неполное.
Объем V правильной треугольной пирамиды равен одной трети произведения площади правильного треугольника, являющегося основанием S (ABC), на высоту h (OS)
Формула площади основания S=a²√3/2. Зная высоту, несложно вычислить объём данной пирамиды.
———————
№4.
Сторона основания правильной треугольной пирамиды равна 8 см, а боковая грань наклонена к плоскости основания под углом 30°. Найти площадь полной поверхности пирамиды.
S(бок)=3•MH•AB:2=3•8/3•8:2=32
————————
№5
Основание пирамиды – треугольник со сторонами 13 см, 14 см, 15 см. Найти площадь сечения, которое проходит параллельно плоскости основания и делит высоту пирамиды в отношении 1:2, считая от вершины пирамиды.
————————
№6.
Найти объём правильной четырехугольной пирамиды, сторона основания которой равна 6 см, а диагональное сечение является равносторонним треугольником.
V=SH
Так как данные призмы имеют равную высоту, отношение их объёмов будет отношением площадей их оснований.
Основание правильной шестиугольной призмы состоит из 6 правильных треугольников.
Поэтому отношение площади основания меньшей призмы к площади основания исходной равно отношению площади одного треугольника меньшего основания к площади одного треугольника большего основания.
Рассмотрим приложенный рисунок основания призмы.
Сторона ОН меньшего основания является высотой треугольника АОВ.
Из 6 таких треугольников состоит большее основание.
Пусть сторона АО=а.
Тогда ОН=а*sin(60°)=а√3):2
Коэффициент подобия треугольников НОМ и АОВ=
НО:АО=(а√3):2):а=(√3):2
Отношение площадей подобных фигур равно квадрату коэффициента их подобия:
S НОМ: S АОВ=[(√3):2)]²=3/4
Следовательно, искомый объём равен 3/4 от V, т.е. 3V/4
№1. Сторона правильной четырехугольной пирамиды равна а, а диагональное сечение - равносторонний треугольник. Найти объем пирамиды.
--------
Пирамида QABCD, QO - высота, АQC- диагональное сечение, АВ=а.
V=S•h:3
S=a²
h=AC√3/2
AC=a:sin45°=a√2
h=a√6/2
V=a³√6/6
----------------------------------------
№2. Высота правильной четырехугольной пирамиды равна 12 см, а апофема – 15 см. Вычислить площадь боковой поверхности пирамиды.
Апофема – высота боковой грани правильной пирамиды, следовательно, QH⊥CD. По т. о 3-х перпендикулярах ОН⊥CD.
По т.Пифагора ОН=9 ( можно обойтись без вычислений, т.к. ∆ QOH- египетский, где отношение катет:гипотенуза=4:5).
ОН - половина АD, ⇒АD=2OH=18 (см)
Площадь боковой поверхности правильной пирамиды равна произведению апофемы на полупериметр основания.
S=15•18•4:2=540 см².
————————
№3. Условие неполное.
Объем V правильной треугольной пирамиды равен одной трети произведения площади правильного треугольника, являющегося основанием S (ABC), на высоту h (OS)
Формула площади основания S=a²√3/2. Зная высоту, несложно вычислить объём данной пирамиды.
———————
№4.
Сторона основания правильной треугольной пирамиды равна 8 см, а боковая грань наклонена к плоскости основания под углом 30°. Найти площадь полной поверхности пирамиды.
S(бок)=3•MH•AB:2=3•8/3•8:2=32
————————
№5
Основание пирамиды – треугольник со сторонами 13 см, 14 см, 15 см. Найти площадь сечения, которое проходит параллельно плоскости основания и делит высоту пирамиды в отношении 1:2, считая от вершины пирамиды.
————————
№6.
Найти объём правильной четырехугольной пирамиды, сторона основания которой равна 6 см, а диагональное сечение является равносторонним треугольником.
———————
Решения задач 4,5,6 даны в приложениях.