Данное решение для первой четверти. Для остальных четвертей решение аналогичное
AB = 5√2; OA = OB - по условию ΔOAB - прямоугольный равнобедренный Теорема Пифагора OA² + OB² = AB² ⇒ 2OA² = AB² 2OA² = (5√2)² 2OA² = 50 ⇒ OA² = 25 ⇒ OA = OB = 5 Координаты точек А (0; 5), В (5; 0) Уравнение прямой y = kx+b Для точки А: 5 = k*0 + b; b = 5 Для точки В: 0 = k*5 + b; 5k = -b; k = -b/5; k = -5/5 = -1
Уравнение прямой для первой четверти y = -x + 5 Уравнение прямой для второй четверти y = x + 5 Уравнение прямой для третьей четверти y = -x - 5 Уравнение прямой для четвертой четверти y = x - 5
Треугольник ABC подобен треугольнику MBN по двум пропорциональным сторонам и углу между ними. Тогда углы BAC и BMN равны, и AC || MN. Далее, PQ || AC поскольку является средней линией треугольника ADC. Значит, MN || PQ и поэтому P, Q, M и N лежат в одной плоскости.
б) Пусть объём ABCD равен V. Пятигранник APMCQN состоит из четырёхугольной пирамиды PACNM с основанием ACNM и треугольной пирамиды PQCN с основанием QCN. Выразим их объемы через V.
Расстояние от P до (BCD) вдвое меньше расстояния от A до (BCD), а площади треугольников QCN и BCD относятся как 1 : 6. Значит,
Площадь треугольника MBN составляет площади ABC. Значит, Расстояние от точки P до (ABC) вдвое меньше расстояния от D до (ABC), поэтому
AB = 5√2; OA = OB - по условию
ΔOAB - прямоугольный равнобедренный
Теорема Пифагора
OA² + OB² = AB² ⇒ 2OA² = AB²
2OA² = (5√2)²
2OA² = 50 ⇒ OA² = 25 ⇒ OA = OB = 5
Координаты точек А (0; 5), В (5; 0)
Уравнение прямой y = kx+b
Для точки А: 5 = k*0 + b; b = 5
Для точки В: 0 = k*5 + b; 5k = -b; k = -b/5;
k = -5/5 = -1
Уравнение прямой для первой четверти y = -x + 5
Уравнение прямой для второй четверти y = x + 5
Уравнение прямой для третьей четверти y = -x - 5
Уравнение прямой для четвертой четверти y = x - 5
Треугольник ABC подобен треугольнику MBN по двум пропорциональным сторонам и углу между ними. Тогда углы BAC и BMN равны, и AC || MN. Далее, PQ || AC поскольку является средней линией треугольника ADC. Значит, MN || PQ и поэтому P, Q, M и N лежат в одной плоскости.
б) Пусть объём ABCD равен V. Пятигранник APMCQN состоит из четырёхугольной пирамиды PACNM с основанием ACNM и треугольной пирамиды PQCN с основанием QCN. Выразим их объемы через V.
Расстояние от P до (BCD) вдвое меньше расстояния от A до (BCD), а площади треугольников QCN и BCD относятся как 1 : 6. Значит,
Площадь треугольника MBN составляет площади ABC. Значит, Расстояние от точки P до (ABC) вдвое меньше расстояния от D до (ABC), поэтому
Таким образом, то есть ответ: 13 : 23.