Все окружности подобны, ⇒ отношение их радиусов равно отношению их длин. ⇒ R=2/3•r√3 или R=2r/√3 . Радиусом окружности, вписанной в правильный многоугольник, является его апофема ( так называется отрезок, проведенный из центра правильного многоугольника перпендикулярно стороне). На рисунке приложения нарисован равнобедренный треугольник, боковые стороны которого – радиусы описанной окружности, высота – радиус вписанной окружности, основание – сторона данного многоугольника. ОН - высота и медиана равнобедренного треугольника. АН=ВН. sin∠OBН=ОН:ОВ=r:R=r:2r/√3=√3/2 ⇒ углы при основании равнобедренного ∆ АОВ=60°. ⇒ угол АОВ=60°. Полная окружность содержит 360°, поэтому сторон у данного по условию многоугольника 360°:60°=6. АВ=12:6=2 Формула площади правильного треугольника S=a²√3:4. Правильный шестиугольник можно разделить на 6 правильных треугольников, поэтому его площадь равна 6•AB²•√3/4=6√3 (ед. площади)
Все окружности подобны, ⇒ отношение их радиусов равно отношению их длин. ⇒ R=2/3•r√3 или R=2r/√3 . Радиусом окружности, вписанной в правильный многоугольник, является его апофема ( так называется отрезок, проведенный из центра правильного многоугольника перпендикулярно стороне). На рисунке приложения нарисован равнобедренный треугольник, боковые стороны которого – радиусы описанной окружности, высота – радиус вписанной окружности, основание – сторона данного многоугольника. ОН - высота и медиана равнобедренного треугольника. АН=ВН. sin∠OBН=ОН:ОВ=r:R=r:2r/√3=√3/2 ⇒ углы при основании равнобедренного ∆ АОВ=60°. ⇒ угол АОВ=60°. Полная окружность содержит 360°, поэтому сторон у данного по условию многоугольника 360°:60°=6. АВ=12:6=2 Формула площади правильного треугольника S=a²√3:4. Правильный шестиугольник можно разделить на 6 правильных треугольников, поэтому его площадь равна 6•AB²•√3/4=6√3 (ед. площади)
11. Так как углы MSP и NSK равны, и оба угла содержат общую часть угол KSP=90 градусов, то равны и углы MSK и NSP
Сумма углов MSK, KSP и NSP равна 180°
Значит, сумма углов MSK и NSP равна 180-90=90°
Каждый из этих углов равен 90/2=45°
Искомый угол MSP состоит из углов MSK и KSP, Значит, равен 90+45=135°
12. Углы AMN и BMN равны между собой, так как каждый из них состоит из двух попарно равных углов.
Так как углы AMN и ВMN являются смежными и в сумме составляют развернутый угол, равный 180°, то каждый из них равен 180/2=90°
ответ: 135°; 90°, 90°