Осевое сечение конуса – прямоугольный, равнобедренный треугольник, с углами 90°, 45°, 45° Гипотенуза которого, является диаметром основания цилиндра и равна х, тогда r=0,5x Высота, проведенная к основанию, является медианой и биссектрисой и разбивает осевое сечение на два равных треугольника и равна H=х√3/2 Гипотенуза треугольника, она же образующая L=r/cos45°=r√2=x*√2/2 Sб= πRl = π*0,5x* x*√2/2 = π* x²*√2/4 Sпп= Sб+Sосн= π* x²*√2/4 + x²/2= π* x²*(√2+2)/4 Sпп/ Sб=( π* x²*(√2+2)/4)/( π* x²*√2/4)=1+ √2
Тр-к АВС высота является медианой биссектрисой и высотой ( т.к . треугольник равнобедренный) следовательно основание делится на пополам (12 /2 = 6 см) у нас есть один катет угол при основании равен 30 градусов, следовательно катет, противолежащий этому углу(30 градусов) будет равен половине гипотенузы. пусть 2х - гипотенуза тогда x- катет(противолежащий углу в 30 градусов) или высота.по теореме пифагора : 4x^2 =x^2 +6^2 4x^2=x^2 +36 4x^2-x^2 =36 3x^2=36 x^2=12 ОТВЕТ: Высота равна корень из 12 (см)
Гипотенуза которого, является диаметром основания цилиндра и равна х,
тогда r=0,5x
Высота, проведенная к основанию, является медианой и биссектрисой и разбивает осевое сечение на два равных треугольника и равна
H=х√3/2
Гипотенуза треугольника, она же образующая
L=r/cos45°=r√2=x*√2/2
Sб= πRl = π*0,5x* x*√2/2 = π* x²*√2/4
Sпп= Sб+Sосн= π* x²*√2/4 + x²/2= π* x²*(√2+2)/4
Sпп/ Sб=( π* x²*(√2+2)/4)/( π* x²*√2/4)=1+ √2
высота является медианой биссектрисой и высотой ( т.к . треугольник равнобедренный)
следовательно основание делится на пополам (12 /2 = 6 см)
у нас есть один катет угол при основании равен 30 градусов, следовательно катет, противолежащий этому углу(30 градусов) будет равен половине гипотенузы.
пусть 2х - гипотенуза тогда x- катет(противолежащий углу в 30 градусов) или высота.по теореме пифагора : 4x^2 =x^2 +6^2 4x^2=x^2 +36 4x^2-x^2 =36 3x^2=36 x^2=12
ОТВЕТ: Высота равна корень из 12 (см)