Числитель - это биквадратный многочлен. Его можно разложить на множители: Заменим х² = у. Получаем квадратный трёхчлен: у² - 5у + 4. Приравняем его нулю. у² - 5у + 4 = 0. Квадратное уравнение, решаем относительно y: Ищем дискриминант:D=(-5)^2-4*1*4=25-4*4=25-16=9; Дискриминант больше 0, уравнение имеет 2 корня: y_1=(2root9-(-5))/(2*1)=(3-(-5))/2=(3+5)/2=8/2=4; y_2=(-2root9-(-5))/(2*1)=(-3-(-5))/2=(-3+5)/2=2/2=1. Отсюда х = +-2 и х = +-1. Числитель приобретает вид (х+1)(х-1)(х+2)(х-2). После сокращения у = (х-1)(х-2). Это даёт 2 корня: х = 1 и х = 2. График - парабола у = х² - 3х + 2. Осталось найти касательную, проходящую через начало координат. Примерно, это у = -5,8х.
Заменим х² = у.
Получаем квадратный трёхчлен: у² - 5у + 4. Приравняем его нулю.
у² - 5у + 4 = 0.
Квадратное уравнение, решаем относительно y:
Ищем дискриминант:D=(-5)^2-4*1*4=25-4*4=25-16=9;
Дискриминант больше 0, уравнение имеет 2 корня:
y_1=(2root9-(-5))/(2*1)=(3-(-5))/2=(3+5)/2=8/2=4;
y_2=(-2root9-(-5))/(2*1)=(-3-(-5))/2=(-3+5)/2=2/2=1.
Отсюда х = +-2 и х = +-1.
Числитель приобретает вид (х+1)(х-1)(х+2)(х-2).
После сокращения у = (х-1)(х-2).
Это даёт 2 корня: х = 1 и х = 2.
График - парабола у = х² - 3х + 2.
Осталось найти касательную, проходящую через начало координат.
Примерно, это у = -5,8х.
Дано :
ΔАВС ~ ΔA₁В₁С₁.
Отношение сходственных сторон = .
S(ΔАВС) = S(ΔА₁В₁С₁) + 77 (см²).
Найти :
S(ΔАВС) = ?
S(ΔА₁В₁С₁) = ?
Отношение сходственных сторон подобных треугольников равно коэффициенту подобия.Отсюда .
Так как k > 1, то в числителе стоит бо́льший треугольник.
Площади подобных треугольников относятся как квадрат коэффициента подобия.Пусть S(ΔА₁В₁С₁) = х, тогда S(ΔАВС) = х + 77 (см²) (так как площадь ΔАВС больше площади ΔА₁В₁С₁, то он, как раз таки, и есть бо́льший треугольник).
Составим уравнение -
S(ΔА₁В₁С₁) = x = 175 (cм²)
S(ΔАВС) = х + 77 (см²) = 175 (см²) + 77 (см²) = 252 (см²).
252 (см²), 175 (см²).