В угол можно вписать окружность. Центр окружности, вписанной в угол, лежит на биссектрисе этого угла. Центр вписанной в угол ВСД окружности лежит на биссектрисе СР Центр вписанной в угол СДА окружности лежит на биссектрисе ДР Т.к. точка Р для биссектрис углов ВСД и СДА общая - она является центром вписанной в оба угла окружности. Расстояние от центра вписанной в угол окружности до его сторон равно ее радиусу. Расстояние из Р до прямых ВС, СД, АД - перпендикуляр и равно радиусу этой окружности. Вариант решения: Расстояние от точки до прямой - отрезок, проведенный к ней перпендикулярно. ОК, ОМ, ОН - перпендикуляры к прямым ВС, СD, AD соответственной. Прямоугольные ∆ СКО=∆СМО по равному острому углу при С и общей гипотенузе ОС. ⇒ КО=ОМ Прямоугольные ∆ НОD=∆ MOD по равному острому углу при D и общей гипотенузе OD. ⇒ НО=ОМ КО=ОМ, НО=ОМ⇒ КО=ОН=ОМ, что и требовалось доказать.
Центр окружности, вписанной в угол, лежит на биссектрисе этого угла.
Центр вписанной в угол ВСД окружности лежит на биссектрисе СР
Центр вписанной в угол СДА окружности лежит на биссектрисе ДР
Т.к. точка Р для биссектрис углов ВСД и СДА общая - она является центром вписанной в оба угла окружности.
Расстояние от центра вписанной в угол окружности до его сторон равно ее радиусу. Расстояние из Р до прямых ВС, СД, АД - перпендикуляр и равно радиусу этой окружности.
Вариант решения:
Расстояние от точки до прямой - отрезок, проведенный к ней перпендикулярно.
ОК, ОМ, ОН - перпендикуляры к прямым ВС, СD, AD соответственной.
Прямоугольные ∆ СКО=∆СМО по равному острому углу при С и общей гипотенузе ОС. ⇒
КО=ОМ
Прямоугольные ∆ НОD=∆ MOD по равному острому углу при D и общей гипотенузе OD. ⇒
НО=ОМ
КО=ОМ, НО=ОМ⇒
КО=ОН=ОМ, что и требовалось доказать.
ОА=ОС=х, ОВ=у.
1) 6²=х²+у²-2хуcos120°=x²+y²+xy=36.
2) 4²=x²+y²+2xycos60°=x²+y²-xy=16.
Вычтем из первого уравнения второе 2ху =20.
ху=10. у=10/х. Подставим в первое
х²+100/х²+х·(10/х)=36,
х²+10/х²+10=36,
х²+10/х²-26=0,
Пусть х²=к,
к+10/к-26=0,
к²-26к+10=0.
к=13+-√156≈13+-12,6.
к1=25,6; к2= 0,4 не рассматриваем
х=√25,6≈5,1.
Подставим в первое уравнение
х²+у²+ху=36,
26,01+у²+5,1у=36,
у²+5,1у-9,99=0,
у=1,5.длина диагоналей параллелограмма: 5,1·2=10,2; 1,5·2=3.
Площадь S= 0,5·10,2·3·sin60°=7.65/
ответ: 7,65.