Рассмотрим получившиеся треугольники АВС и АДЕ: Угол А – общий. Углы АВС и АДЕ равны как соответственные углы образованные параллельными прямыми, пересеченными секущей Значит данные треугольники подобны по первому признаку подобия треугольников: Если два угла одного треугольника соответственно равны двум углам другого треугольника, то треугольники подобны. Сторона АЕ треугольника АДЕ равна АС+СЕ: АЕ=8+4=12 см. Зная это, мы можем найти коэффициент подобия треугольников: k=АЕ/АС=12/8=1,5 Найдем стороны треугольника АДЕ: АД=АВ*k=10*1.5=15 см. ДЕ=ВС*k=4*1,5=6 см. ВД=АД-АБ=15-10=5 см. ответ: ВД=5 см. ДЕ=6 см.
построй произвольный четырёхугольник cdef, проведи прямую ce. на прямой ce отметь три точки: одна внутри четырехугольника, две вне его, слева ниже и справа выше. обзови точки g1, g2,g3. через эти три точки проведи три прямые, параллельные cd. проведи прямые cf,ed. у тебя получилось шесть точек пересечения прямых с плоскостью а: когда эта плоскость выше, ниже четырёхугольника и когда она пересекает его. а линии пересечения плоскостей (опять же для трёх случаев) ты уже провела: параллельные прямые через g1, g2, g3.
Угол А – общий. Углы АВС и АДЕ равны как соответственные углы образованные параллельными прямыми, пересеченными секущей
Значит данные треугольники подобны по первому признаку подобия треугольников: Если два угла одного треугольника соответственно равны двум углам другого треугольника, то треугольники подобны.
Сторона АЕ треугольника АДЕ равна АС+СЕ:
АЕ=8+4=12 см.
Зная это, мы можем найти коэффициент подобия треугольников: k=АЕ/АС=12/8=1,5
Найдем стороны треугольника АДЕ:
АД=АВ*k=10*1.5=15 см.
ДЕ=ВС*k=4*1,5=6 см.
ВД=АД-АБ=15-10=5 см.
ответ: ВД=5 см. ДЕ=6 см.
ответ:
объяснение:
построй произвольный четырёхугольник cdef, проведи прямую ce. на прямой ce отметь три точки: одна внутри четырехугольника, две вне его, слева ниже и справа выше. обзови точки g1, g2,g3. через эти три точки проведи три прямые, параллельные cd. проведи прямые cf,ed. у тебя получилось шесть точек пересечения прямых с плоскостью а: когда эта плоскость выше, ниже четырёхугольника и когда она пересекает его. а линии пересечения плоскостей (опять же для трёх случаев) ты уже провела: параллельные прямые через g1, g2, g3.