ГЕОМЕТРИЯ СОР дам. 3.Боковая сторона равнобедренного треугольника равна 12 см, а высота составляет 8 см. Найти радиусы описанной и вписанной окружностей.
Верных ответов: 2.
Варианты ответов: R = 8 см, r = 7 см, R= 12,5 см, r = 4 см, R = 10 см, r = 10 см.
S(осн)=(a^2(√3))/4
Вершина пирамиды проецируется в центр треугольника, который лежит на пересечении медиан. Медианы в свою очередь делятся в отношении 2 к 1, считая от вершины. AH-медиана, высота, опущенная на BC. Образуется прямоугольный треугольник с катетом 0,5*a и гипотенузой a
AH=√((a^2-(0,5a)^2)=(a√3)/2
Поделим результат на 3, чтобы получить катет прямоугольного треугольника SOH, где S - вершина пирамиды, а O - центр треугольника
OH=(a√3)/6
В этом треугольнике мы знаем катет, угол альфа, прямой угол. Пусть альфа=α По теореме синусов
h/sin(α)=OH/(sin(90)-α);
h=OH*tg(α)
V=S(осн)*h=((a^2√3)/4)*((a√3)/(6)*tg(α)/3 = (a^3*tg(α))/24
с² = 48² + 36² =2304 + 1296 = 3600
с = 60
Площадь через катеты
S = 1/2*36*48 = 864
Полупериметр
p = 1/2(36 + 48 + 60) = 72
Площадь через полупериметр и вписанную окружность
S = rp
864 = r*72
r = 12
---
Площадь через гипотенузу и высоту
S = 1/2*h*60 = 864
h = 144/5
---
Короткий отрезок гипотенузы, отсекаемый высотой, найдём по т. Пифагора
x² + h² = 36²
x² + (144/5)² = 36²
x² + 20736/25 = 1296
x² = 11664/25
x = 108/5
---
Короткий отрезок гипотенузы y, отсекаемый биссектрисой прямого угла найдём из пропорциональности отрезков, на которые биссектриса делит противолежащую сторону прилежащим сторонам
y/36 = (60-y)/48
4y = 180 - 3y
7y = 180
y = 180/7
Расстояние между точками пересечения с гипотенузой высоты и биссектрисы
z₂ = y - x = 180/7 - 108/5 = (180*5 - 108*7)/35 = (900 - 756)/35 = 144/35
В больном синем треугольнике не хватает гипотенузы
l₂² = (144/5)² + (144/35)²
l₂² = 144²*(1/5² + 1/35²) = 144²*(7²/35² + 1/35²) = 144²*50/35² = 144²*2/7²
l₂ = 144√2/7
Расстояние между вершиной прямого угла исходного треугольника и центром вписанной окружности (r=12)
l₁² = r² + r²
l₁² = 2r²
l₁² = 2*12²
l₁ = 12√2
Коэффициент подобия малого и большого синего треугольников
k = l₁/l₂ = 12√2/(144√2/7) = 7/12
и из подобия короткий катет малого синего треугольника
k = z₁/z₂
7/12 = z₁/(144/35)
z₁ = 12/5