ГЕОМЕТРИЯ ВСТАВИТЬ ПРОПУСКИ
На сторонах угла ∡ ABC точки A и C находятся на равных расстояниях от вершины угла BA=BC. Через эти точки к сторонам угла проведены перпендикуляры AE⊥ BD, CD⊥ BE.
1. Докажи равенство треугольников ΔAFD и ΔCFE.
2. Определи величину угла, под которым перпендикуляр CD пересекает BA, если AE пересекает BC под углом 70°.
1. Назови треугольники, равенство которых позволит доказать равенство ΔAFD и ΔCFE:
ΔBA = Δ
По какому признаку доказывается это равенство?
По второму
По первому
По третьему
Отметь элементы, равенство которых в этих треугольниках позволяет применять выбранный признак:
углы стороны
BEA BC
DCB CD
ABE DB
ЕAB EB
BDC AE
CBD BA
По какому признаку доказывается равенство ΔAFD и ΔCFE?
По второму
По первому
По третьему
Отметь элементы, равенство которых в треугольниках ΔAFD и ΔCFE позволяет применять выбранный признак:
углы стороны
FCE CE
FAD AD
EFC FC
CEF FA
DFA DF
ADF EF
2. Величина угла, под которым перпендикуляр CD пересекает BA —
°.
2) медиана угла С = С/2 = 23 см
АМ = 23 см, следовательно треугольник АСМ - равнобедренный
3) в равнобедренном треугольнике биссектриса опущенная к основанию является так же его высотой, следовательно треугольник ADM - прямоугольный
4) угол D = 90 градусов, АМ = 23 см, угол А = 30 градусов
Так как в прямоугльном треугольнике катет лежащий против угла в 30 градусов равен половине гипотенузы то DM = АМ/2 = 23/2 = 11.5
Координаты точки пересечения медиан в треугольнике равны средним арифметическим соответствующих координат вершин
То есть абсцисса точки пересечения медиан равна сумме абсцисс вершин, деленной на три, то же самое для ординат (а для пространственного треугольника и для аппликат).
В нашем случае точка G пересечения медиан имеет координаты
G(4/3;7/3).
Уравнение прямой, проходящей через B и G, и будет уравнением нужной медианы.
y=kx+b; 5=2k+b; 7/3=4k/3+b (это я подставил координаты точек, лежащих на прямой). Беря разность этих уравнений, находим k:
5-7/3=2k-4k/3; 8/3=2k/3; k=4; подставляем в первое условие:
5=2·4+b; b= - 3.
ответ: y=4x-3