Выразим заданныеточки через координаты А, В и С: К = ((Ах+Вх)/2; (Ау+Ву)/2) = (3; -2) Л = ((Ах+Сх)/2; (Ау+Су)/2) = (2; 5) М = ((Вх+Сх)/2; (Ву+Су)/2) = (-2; 1)
запишем систему 2-ух уравнений по х и по у: {(Вх+Сх+ Ах+Сх+ Ах+Вх+)/2 = 3 + 2 +(-2) =3 {(Ву+Су + Ау+Су +Ау+Ву)/2 = (-2)+5+1 =4
{Вх+Сх+Ах = 3 {Ву+Су+Ау = 4
возвращаемся к координатам точки М и видим: М = ((Вх+Сх)/2; (Ву+Су)/2) = (-2; 1) откуда находим Вх+Сх = -2*2 = -4 и Ву+Су = 1*2 = 2
подставляем в нашу систему {-4+Ах = 3 {2+Ау = 4 и находим Ах = 7; Ау = 2 А(7;2)
К = ((Ах+Вх)/2; (Ау+Ву)/2) = (3; -2)
Л = ((Ах+Сх)/2; (Ау+Су)/2) = (2; 5)
М = ((Вх+Сх)/2; (Ву+Су)/2) = (-2; 1)
запишем систему 2-ух уравнений по х и по у:
{(Вх+Сх+ Ах+Сх+ Ах+Вх+)/2 = 3 + 2 +(-2) =3
{(Ву+Су + Ау+Су +Ау+Ву)/2 = (-2)+5+1 =4
{Вх+Сх+Ах = 3
{Ву+Су+Ау = 4
возвращаемся к координатам точки М и видим: М = ((Вх+Сх)/2; (Ву+Су)/2) = (-2; 1)
откуда находим
Вх+Сх = -2*2 = -4 и Ву+Су = 1*2 = 2
подставляем в нашу систему
{-4+Ах = 3
{2+Ау = 4
и находим Ах = 7; Ау = 2
А(7;2)
АС=√7см
Объяснение:
Дано:
ABCD- трапеция
АВ=CD=√3см
BC=1см
<ABC=150°
АС=?
___________
В равнобокой трапеции углы при основаниях равны.
<АВС=<ВСD
<BAD=<CDA
В трапеции сумма углов прилежащих к боковой стороне равна 180°
<СDA=180°-<BCD=180°-150°=130°
Проведём две высоты СК и ВМ.
АМ=KD
∆CKD- прямоугольный.
sin<CDK=CK/CD
sin30°=1/2
1/2=CK/√3
CK=√3/2 см.
cos<CDK=KD/CD
cos30°=√3/2
√3/2=KD/√3
KD=√3√3/2=1,5см.
ВС=МК=1см
АК=АМ+МК=1,5+1=2,5см
∆АСК- прямоугольный треугольник
По теореме Пифагора
АС²=АК²+СК²=2,5²+(√3/2)²=6,25+0,75=7см
АС=√7см